高温对小麦灌浆前期籽粒的影响

Chan Seop Ko, M. Oh, J. Hyun, Kyeong-Hoon Kim, Jin Baek Kim, M. Hong, Y. Seo
{"title":"高温对小麦灌浆前期籽粒的影响","authors":"Chan Seop Ko, M. Oh, J. Hyun, Kyeong-Hoon Kim, Jin Baek Kim, M. Hong, Y. Seo","doi":"10.9787/KJBS.2017.49.3.200","DOIUrl":null,"url":null,"abstract":": Hexaploid wheat ( Triticum aestivum L.) exceeds about 30% of the world’s cereal production and cultivated over 220 million ha worldwide. Heat stress during the grain filling period gives detrimental effect on crop yields and has emerged as a serious problem throughout the world. Korean wheat cultivars that were released since 1960s were developed for various aims such as winter hardness, earliness, and pest resistance, etc. However, heat stress resistance is an emerging target for wheat breeding nowadays. Selected 11 Korean wheat cultivars (“Baegjoong”, “Dajung”, “Goso”, “Hanbaek”, “Jokyung”, “Joeun”, “Jopum”, “Keumgang”, “Olgeuru”, “Sinmichal”, “Uri”) were exposed to high temperature from DAF (days after flowering) 9~13. In this study, plant responses to heat stress as measured by reduction ratios of total chlorophyll contents, 100 seed weight, shoot dry weight can be translated into degree of tolerance. Therefore, these parameters can be used in wheat breeding for heat tolerance during grain filling period. The obtained results allow us to classify cultivars for heat stress tolerance. Pedigree information of Korean cultivars was shown that wheat line of either tolerant, moderate tolerant, or susceptible trait is succeeded to their descendent, which enable breeders to develop heat stress tolerant wheat by appropriate parental choice.","PeriodicalId":448090,"journal":{"name":"Korean Journal of Breeding","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of high temperature on early stage of grain filling period in wheat (Triticum aestivum L.)\",\"authors\":\"Chan Seop Ko, M. Oh, J. Hyun, Kyeong-Hoon Kim, Jin Baek Kim, M. Hong, Y. Seo\",\"doi\":\"10.9787/KJBS.2017.49.3.200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Hexaploid wheat ( Triticum aestivum L.) exceeds about 30% of the world’s cereal production and cultivated over 220 million ha worldwide. Heat stress during the grain filling period gives detrimental effect on crop yields and has emerged as a serious problem throughout the world. Korean wheat cultivars that were released since 1960s were developed for various aims such as winter hardness, earliness, and pest resistance, etc. However, heat stress resistance is an emerging target for wheat breeding nowadays. Selected 11 Korean wheat cultivars (“Baegjoong”, “Dajung”, “Goso”, “Hanbaek”, “Jokyung”, “Joeun”, “Jopum”, “Keumgang”, “Olgeuru”, “Sinmichal”, “Uri”) were exposed to high temperature from DAF (days after flowering) 9~13. In this study, plant responses to heat stress as measured by reduction ratios of total chlorophyll contents, 100 seed weight, shoot dry weight can be translated into degree of tolerance. Therefore, these parameters can be used in wheat breeding for heat tolerance during grain filling period. The obtained results allow us to classify cultivars for heat stress tolerance. Pedigree information of Korean cultivars was shown that wheat line of either tolerant, moderate tolerant, or susceptible trait is succeeded to their descendent, which enable breeders to develop heat stress tolerant wheat by appropriate parental choice.\",\"PeriodicalId\":448090,\"journal\":{\"name\":\"Korean Journal of Breeding\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Breeding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9787/KJBS.2017.49.3.200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Breeding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9787/KJBS.2017.49.3.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

:六倍体小麦(Triticum aestivum L.)占世界谷物产量的30%以上,全球种植面积超过2.2亿公顷。灌浆期的热胁迫对作物产量产生不利影响,已成为世界性的严重问题。从20世纪60年代开始推出的韩国小麦品种,以耐寒性、早熟性、抗虫性等多种目的进行了开发。然而,耐热性是目前小麦育种的一个新兴目标。选择了11个韩国小麦品种(“白中”、“大中”、“高素”、“韩白”、“朝京”、“朝恩”、“朝金”、“金刚”、“八根鲁”、“新米夏”、“乌里”),从开花后9~13天开始进行高温处理。在本研究中,植物对热胁迫的响应可以用总叶绿素含量、百粒重、茎干重的还原率来表示。因此,这些参数可用于小麦灌浆期耐热性育种。所得结果使我们能够根据耐热性对品种进行分类。韩国品种的家系信息表明,具有耐、中耐或敏感性状的小麦品系可以遗传给后代,这使得育种者可以通过适当的亲本选择培育出耐热胁迫的小麦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of high temperature on early stage of grain filling period in wheat (Triticum aestivum L.)
: Hexaploid wheat ( Triticum aestivum L.) exceeds about 30% of the world’s cereal production and cultivated over 220 million ha worldwide. Heat stress during the grain filling period gives detrimental effect on crop yields and has emerged as a serious problem throughout the world. Korean wheat cultivars that were released since 1960s were developed for various aims such as winter hardness, earliness, and pest resistance, etc. However, heat stress resistance is an emerging target for wheat breeding nowadays. Selected 11 Korean wheat cultivars (“Baegjoong”, “Dajung”, “Goso”, “Hanbaek”, “Jokyung”, “Joeun”, “Jopum”, “Keumgang”, “Olgeuru”, “Sinmichal”, “Uri”) were exposed to high temperature from DAF (days after flowering) 9~13. In this study, plant responses to heat stress as measured by reduction ratios of total chlorophyll contents, 100 seed weight, shoot dry weight can be translated into degree of tolerance. Therefore, these parameters can be used in wheat breeding for heat tolerance during grain filling period. The obtained results allow us to classify cultivars for heat stress tolerance. Pedigree information of Korean cultivars was shown that wheat line of either tolerant, moderate tolerant, or susceptible trait is succeeded to their descendent, which enable breeders to develop heat stress tolerant wheat by appropriate parental choice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effects of Harvesting Time on the Efficiency of Tissue Culture Used Immature Embryos from Korean Wheat Cultivars QTL Analysis of Heading Date Using 93-11×Milyang352 Doubled Haploid Lines in Rice Functional Screening of Salt Stress Tolerance Genes Using Transgenic Arabidopsis thaliana Lines Overexpressing Brassica rapa Full-length Genes and Brassica napus Transformation A Malting Barley (Hordeum vulgare L.) Variety, ‘Dapum’, with Suitable Yield in Paddy Fields and Enhanced Brewing Quality Recent Advances in Genetic Regulation of Chlorophyll Metabolism in Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1