使用数据挖掘的自动数据库聚类

Sylvain Guinepain, L. Gruenwald
{"title":"使用数据挖掘的自动数据库聚类","authors":"Sylvain Guinepain, L. Gruenwald","doi":"10.1109/DEXA.2006.32","DOIUrl":null,"url":null,"abstract":"Because of data proliferation, efficient access methods and data storage techniques have become increasingly critical to maintain an acceptable query response time. One way to improve query response time is to reduce the number of disk I/Os by partitioning the database vertically (attribute clustering) and/or horizontally (record clustering). A clustering is optimized for a given set of queries. However in dynamic systems the queries change with time, the clustering in place becomes obsolete, and the database needs to be re-clustered dynamically. In this paper we discuss an efficient algorithm for attribute clustering that dynamically and automatically generate attribute clusters based on closed item sets mined from the attributes sets found in the queries running against the database","PeriodicalId":282986,"journal":{"name":"17th International Workshop on Database and Expert Systems Applications (DEXA'06)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Automatic Database Clustering Using Data Mining\",\"authors\":\"Sylvain Guinepain, L. Gruenwald\",\"doi\":\"10.1109/DEXA.2006.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of data proliferation, efficient access methods and data storage techniques have become increasingly critical to maintain an acceptable query response time. One way to improve query response time is to reduce the number of disk I/Os by partitioning the database vertically (attribute clustering) and/or horizontally (record clustering). A clustering is optimized for a given set of queries. However in dynamic systems the queries change with time, the clustering in place becomes obsolete, and the database needs to be re-clustered dynamically. In this paper we discuss an efficient algorithm for attribute clustering that dynamically and automatically generate attribute clusters based on closed item sets mined from the attributes sets found in the queries running against the database\",\"PeriodicalId\":282986,\"journal\":{\"name\":\"17th International Workshop on Database and Expert Systems Applications (DEXA'06)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th International Workshop on Database and Expert Systems Applications (DEXA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2006.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Workshop on Database and Expert Systems Applications (DEXA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2006.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由于数据的激增,高效的访问方法和数据存储技术对于维持可接受的查询响应时间变得越来越重要。改善查询响应时间的一种方法是通过垂直(属性集群)和/或水平(记录集群)划分数据库来减少磁盘I/ o的数量。集群是针对给定的查询集进行优化的。然而,在动态系统中,查询随着时间的变化而变化,就地集群变得过时,数据库需要动态地重新集群。本文讨论了一种高效的属性聚类算法,该算法基于从数据库查询中发现的属性集中挖掘的封闭项集,动态自动地生成属性聚类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Database Clustering Using Data Mining
Because of data proliferation, efficient access methods and data storage techniques have become increasingly critical to maintain an acceptable query response time. One way to improve query response time is to reduce the number of disk I/Os by partitioning the database vertically (attribute clustering) and/or horizontally (record clustering). A clustering is optimized for a given set of queries. However in dynamic systems the queries change with time, the clustering in place becomes obsolete, and the database needs to be re-clustered dynamically. In this paper we discuss an efficient algorithm for attribute clustering that dynamically and automatically generate attribute clusters based on closed item sets mined from the attributes sets found in the queries running against the database
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualization and Bayesian Nets to link Business Aims Interaction Styles for Service Discovery in Mobile Business Applications Service and Resource Discovery Using P2P An Integrity Semantics for Open World Databases Requirements on the Use of Goal-Directed Imitation for Self-Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1