S Fukayama, A K Kearns, R M Skurat, A H Tashjian, F R Bringhurst
{"title":"SaOS-2人成骨细胞对碱性磷酸酶释放的蛋白激酶a依赖性抑制:表达环状amp抗性表型的新突变细胞系的研究","authors":"S Fukayama, A K Kearns, R M Skurat, A H Tashjian, F R Bringhurst","doi":"10.1091/mbc.2.11.889","DOIUrl":null,"url":null,"abstract":"<p><p>We have established mutant SaOS-2 cell lines that express a cyclic AMP (cAMP)-resistant phenotype to investigate the regulation and functional importance of orthophosphoric-monoester phosphohydrolase alkaline optimum (ALPase) in the action of parathyroid hormone (PTH). Cells were stably transfected with a plasmid that directs the synthesis of a mutant form of the type I regulatory subunit of protein kinase A (PKA) under the control of the metallothionein promotor. There was no significant difference between parental SaOS-2 cells and the mutant lines in the affinity or number of receptors for 125I-Nle8,18Tyr34bPTH1-34NH2, either in the absence or presence of Zn2+. When cAMP-dependent gene transcription was examined using transient transfection with a somatostatin promoter-chloramphenicol acetyl transferase (CAT) reporter plasmid, CAT activity stimulated by human PTH and dibutyryl cAMP (DBcAMP) was inhibited by greater than 90% in the presence of Zn2+ in the mutant cell lines. In contrast, activation by a phorbol ester of a pentameric collagenase promoter/CAT construct containing five tandem copies of the AP-1 response element (5x-TRE-CAT) was unaffected in Zn(2+)-treated mutant cells. The inhibitory actions of PTH and DBcAMP on ALPase release were blunted by up to 80-90% in the mutant cell lines in the presence of Zn2+; there were no significant differences in the magnitude of inhibitory effects between these agonists. We conclude that the inhibitory action of PTH on ALPase release in SaOS-2 cells is mediated via activation of PKA. These cAMP-resistant cell lines will be especially useful in elucidating signal transduction mechanism(s) for PTH in human osteoblastic cells.</p>","PeriodicalId":9671,"journal":{"name":"Cell regulation","volume":"2 11","pages":"889-96"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1091/mbc.2.11.889","citationCount":"10","resultStr":"{\"title\":\"Protein kinase A-dependent inhibition of alkaline phosphatase release by SaOS-2 human osteoblastic cells: studies in new mutant cell lines that express a cyclic AMP-resistant phenotype.\",\"authors\":\"S Fukayama, A K Kearns, R M Skurat, A H Tashjian, F R Bringhurst\",\"doi\":\"10.1091/mbc.2.11.889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have established mutant SaOS-2 cell lines that express a cyclic AMP (cAMP)-resistant phenotype to investigate the regulation and functional importance of orthophosphoric-monoester phosphohydrolase alkaline optimum (ALPase) in the action of parathyroid hormone (PTH). Cells were stably transfected with a plasmid that directs the synthesis of a mutant form of the type I regulatory subunit of protein kinase A (PKA) under the control of the metallothionein promotor. There was no significant difference between parental SaOS-2 cells and the mutant lines in the affinity or number of receptors for 125I-Nle8,18Tyr34bPTH1-34NH2, either in the absence or presence of Zn2+. When cAMP-dependent gene transcription was examined using transient transfection with a somatostatin promoter-chloramphenicol acetyl transferase (CAT) reporter plasmid, CAT activity stimulated by human PTH and dibutyryl cAMP (DBcAMP) was inhibited by greater than 90% in the presence of Zn2+ in the mutant cell lines. In contrast, activation by a phorbol ester of a pentameric collagenase promoter/CAT construct containing five tandem copies of the AP-1 response element (5x-TRE-CAT) was unaffected in Zn(2+)-treated mutant cells. The inhibitory actions of PTH and DBcAMP on ALPase release were blunted by up to 80-90% in the mutant cell lines in the presence of Zn2+; there were no significant differences in the magnitude of inhibitory effects between these agonists. We conclude that the inhibitory action of PTH on ALPase release in SaOS-2 cells is mediated via activation of PKA. These cAMP-resistant cell lines will be especially useful in elucidating signal transduction mechanism(s) for PTH in human osteoblastic cells.</p>\",\"PeriodicalId\":9671,\"journal\":{\"name\":\"Cell regulation\",\"volume\":\"2 11\",\"pages\":\"889-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1091/mbc.2.11.889\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.2.11.889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1091/mbc.2.11.889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protein kinase A-dependent inhibition of alkaline phosphatase release by SaOS-2 human osteoblastic cells: studies in new mutant cell lines that express a cyclic AMP-resistant phenotype.
We have established mutant SaOS-2 cell lines that express a cyclic AMP (cAMP)-resistant phenotype to investigate the regulation and functional importance of orthophosphoric-monoester phosphohydrolase alkaline optimum (ALPase) in the action of parathyroid hormone (PTH). Cells were stably transfected with a plasmid that directs the synthesis of a mutant form of the type I regulatory subunit of protein kinase A (PKA) under the control of the metallothionein promotor. There was no significant difference between parental SaOS-2 cells and the mutant lines in the affinity or number of receptors for 125I-Nle8,18Tyr34bPTH1-34NH2, either in the absence or presence of Zn2+. When cAMP-dependent gene transcription was examined using transient transfection with a somatostatin promoter-chloramphenicol acetyl transferase (CAT) reporter plasmid, CAT activity stimulated by human PTH and dibutyryl cAMP (DBcAMP) was inhibited by greater than 90% in the presence of Zn2+ in the mutant cell lines. In contrast, activation by a phorbol ester of a pentameric collagenase promoter/CAT construct containing five tandem copies of the AP-1 response element (5x-TRE-CAT) was unaffected in Zn(2+)-treated mutant cells. The inhibitory actions of PTH and DBcAMP on ALPase release were blunted by up to 80-90% in the mutant cell lines in the presence of Zn2+; there were no significant differences in the magnitude of inhibitory effects between these agonists. We conclude that the inhibitory action of PTH on ALPase release in SaOS-2 cells is mediated via activation of PKA. These cAMP-resistant cell lines will be especially useful in elucidating signal transduction mechanism(s) for PTH in human osteoblastic cells.