基于机器和深度学习模型的僵尸网络攻击检测研究综述

Dorieh M. Alomari, Fatima M. Anis, Maryam Alabdullatif, Hamoud Aljamaan
{"title":"基于机器和深度学习模型的僵尸网络攻击检测研究综述","authors":"Dorieh M. Alomari, Fatima M. Anis, Maryam Alabdullatif, Hamoud Aljamaan","doi":"10.1145/3593434.3593967","DOIUrl":null,"url":null,"abstract":"Botnets can be a major risk to computer networks, as they attack in dangerous and diverse ways. They are becoming increasingly challenging due to the massive amount of network devices and the obfuscation of communication protocols. This paper provides a critical review and analysis of the recent Machine Learning based models for detecting botnet attacks. It explains the used methodologies, datasets, validation methods, and detection metrics. This paper also identifies the current gaps and limitations to provide recommendations for future research directions in this field. This survey can be used as a guide for new researchers to enhance this research area.","PeriodicalId":178596,"journal":{"name":"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on Botnets Attack Detection Utilizing Machine and Deep Learning Models\",\"authors\":\"Dorieh M. Alomari, Fatima M. Anis, Maryam Alabdullatif, Hamoud Aljamaan\",\"doi\":\"10.1145/3593434.3593967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Botnets can be a major risk to computer networks, as they attack in dangerous and diverse ways. They are becoming increasingly challenging due to the massive amount of network devices and the obfuscation of communication protocols. This paper provides a critical review and analysis of the recent Machine Learning based models for detecting botnet attacks. It explains the used methodologies, datasets, validation methods, and detection metrics. This paper also identifies the current gaps and limitations to provide recommendations for future research directions in this field. This survey can be used as a guide for new researchers to enhance this research area.\",\"PeriodicalId\":178596,\"journal\":{\"name\":\"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3593434.3593967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3593434.3593967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

僵尸网络可能是计算机网络的主要风险,因为它们以危险和多样化的方式进行攻击。由于大量的网络设备和通信协议的混乱,它们变得越来越具有挑战性。本文对最近用于检测僵尸网络攻击的基于机器学习的模型进行了批判性的回顾和分析。它解释了使用的方法、数据集、验证方法和检测指标。本文还指出了目前的差距和局限性,为该领域未来的研究方向提供了建议。这一调查可以作为新研究者加强这一研究领域的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey on Botnets Attack Detection Utilizing Machine and Deep Learning Models
Botnets can be a major risk to computer networks, as they attack in dangerous and diverse ways. They are becoming increasingly challenging due to the massive amount of network devices and the obfuscation of communication protocols. This paper provides a critical review and analysis of the recent Machine Learning based models for detecting botnet attacks. It explains the used methodologies, datasets, validation methods, and detection metrics. This paper also identifies the current gaps and limitations to provide recommendations for future research directions in this field. This survey can be used as a guide for new researchers to enhance this research area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification-based Static Collection Selection for Java: Effectiveness and Adaptability Decentralised Autonomous Organisations for Public Procurement Analyzing the Resource Usage Overhead of Mobile App Development Frameworks Investigation of Security-related Commits in Android Apps Exploring the UK Cyber Skills Gap through a mapping of active job listings to the Cyber Security Body of Knowledge (CyBOK)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1