相对错误流分位数

Graham Cormode, Zohar S. Karnin, Edo Liberty, J. Thaler, P. Vesel'y
{"title":"相对错误流分位数","authors":"Graham Cormode, Zohar S. Karnin, Edo Liberty, J. Thaler, P. Vesel'y","doi":"10.1145/3452021.3458323","DOIUrl":null,"url":null,"abstract":"Approximating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe U equipped with a total order, the task is to compute a sketch (data structure) of size poly (log(n), 1/ε). Given the sketch and a query item y ∈ U, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive ε n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This paper investigates multiplicative (1±ε)$-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(ε2 n)/ε2) or O(log3(ε n)/ε) universe items. This paper presents a randomized algorithm storing O(log1.5 (ε n)/ε) items, which is within an O(√log(ε n)) factor of optimal. The algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.","PeriodicalId":405398,"journal":{"name":"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Relative Error Streaming Quantiles\",\"authors\":\"Graham Cormode, Zohar S. Karnin, Edo Liberty, J. Thaler, P. Vesel'y\",\"doi\":\"10.1145/3452021.3458323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe U equipped with a total order, the task is to compute a sketch (data structure) of size poly (log(n), 1/ε). Given the sketch and a query item y ∈ U, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive ε n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This paper investigates multiplicative (1±ε)$-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(ε2 n)/ε2) or O(log3(ε n)/ε) universe items. This paper presents a randomized algorithm storing O(log1.5 (ε n)/ε) items, which is within an O(√log(ε n)) factor of optimal. The algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.\",\"PeriodicalId\":405398,\"journal\":{\"name\":\"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452021.3458323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452021.3458323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在数据分析和监控中,接近流数据的秩、分位数和分布是一项中心任务。给定一个数据宇宙U中带有总顺序的n项流,任务是计算一个大小为poly (log(n), 1/ε)的草图(数据结构)。给定草图和查询项y∈U,应该能够近似其在流中的排名,即小于或等于y的流元素的数量。迄今为止,大多数工作都集中在可加性ε n误差近似上,最终在KLL草图中实现了最优渐近行为。本文研究了秩的乘法(1±ε)$-误差近似。乘法误差的实际动机源于理解分布尾部的需求,因此草图在极值附近更准确。由于先前的工作,最节省空间的算法存储O(log(ε 2n)/ε2)或O(log3(ε n)/ε)宇宙项。本文提出了一种存储O(log1.5 (ε n)/ε)项的随机化算法,该算法在O(√log(ε n))个最优因子范围内。该算法不需要预先知道流的长度,并且是完全可合并的,使其适合并行和分布式计算环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relative Error Streaming Quantiles
Approximating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe U equipped with a total order, the task is to compute a sketch (data structure) of size poly (log(n), 1/ε). Given the sketch and a query item y ∈ U, one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y. Most works to date focused on additive ε n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This paper investigates multiplicative (1±ε)$-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log(ε2 n)/ε2) or O(log3(ε n)/ε) universe items. This paper presents a randomized algorithm storing O(log1.5 (ε n)/ε) items, which is within an O(√log(ε n)) factor of optimal. The algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover or Pack: New Upper and Lower Bounds for Massively Parallel Joins Data-Independent Space Partitionings for Summaries 2021 ACM PODS Alberto O. Mendelzon Test-of-Time Award Modern Lower Bound Techniques in Database Theory and Constraint Satisfaction Privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1