{"title":"在为CPU编译细粒度spmd线程程序时正确处理同步","authors":"Ziyu Guo, E. Zhang, Xipeng Shen","doi":"10.1109/PACT.2011.62","DOIUrl":null,"url":null,"abstract":"Automatic compilation for multiple types of devices is important, especially given the current trends towards heterogeneous computing. This paper concentrates on some issues in compiling fine-grained SPMD-threaded code (e.g., GPU CUDA code) for multicore CPUs. It points out some correctness pitfalls in existing techniques, particularly in their treatment to implicit synchronizations. It then describes a systematic dependence analysis specially designed for handling implicit synchronizations in SPMD-threaded programs. By unveiling the relations between inter-thread data dependences and correct treatment to synchronizations, it presents a dependence-based solution to the problem. Experiments demonstrate that the proposed techniques can resolve the correctness issues in existing compilation techniques, and help compilers produce correct and efficient translation results.","PeriodicalId":106423,"journal":{"name":"2011 International Conference on Parallel Architectures and Compilation Techniques","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Correctly Treating Synchronizations in Compiling Fine-Grained SPMD-Threaded Programs for CPU\",\"authors\":\"Ziyu Guo, E. Zhang, Xipeng Shen\",\"doi\":\"10.1109/PACT.2011.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic compilation for multiple types of devices is important, especially given the current trends towards heterogeneous computing. This paper concentrates on some issues in compiling fine-grained SPMD-threaded code (e.g., GPU CUDA code) for multicore CPUs. It points out some correctness pitfalls in existing techniques, particularly in their treatment to implicit synchronizations. It then describes a systematic dependence analysis specially designed for handling implicit synchronizations in SPMD-threaded programs. By unveiling the relations between inter-thread data dependences and correct treatment to synchronizations, it presents a dependence-based solution to the problem. Experiments demonstrate that the proposed techniques can resolve the correctness issues in existing compilation techniques, and help compilers produce correct and efficient translation results.\",\"PeriodicalId\":106423,\"journal\":{\"name\":\"2011 International Conference on Parallel Architectures and Compilation Techniques\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Parallel Architectures and Compilation Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2011.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2011.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Correctly Treating Synchronizations in Compiling Fine-Grained SPMD-Threaded Programs for CPU
Automatic compilation for multiple types of devices is important, especially given the current trends towards heterogeneous computing. This paper concentrates on some issues in compiling fine-grained SPMD-threaded code (e.g., GPU CUDA code) for multicore CPUs. It points out some correctness pitfalls in existing techniques, particularly in their treatment to implicit synchronizations. It then describes a systematic dependence analysis specially designed for handling implicit synchronizations in SPMD-threaded programs. By unveiling the relations between inter-thread data dependences and correct treatment to synchronizations, it presents a dependence-based solution to the problem. Experiments demonstrate that the proposed techniques can resolve the correctness issues in existing compilation techniques, and help compilers produce correct and efficient translation results.