基于聚类树的社会标签系统混合语义相似度度量

Changli Zhang, Jinjin Zhang, M. Yan
{"title":"基于聚类树的社会标签系统混合语义相似度度量","authors":"Changli Zhang, Jinjin Zhang, M. Yan","doi":"10.1109/PIC.2010.5687995","DOIUrl":null,"url":null,"abstract":"As the social tagging systems becoming prevalent, it remains a critical question that how to make explicit the semantics for tags to fully facilitate Web2.0 applications. This paper establishes a cluster tree based semantic similarity measure for social tagging systems, combines it with traditional statistics based measures into a hybrid one, tailors the hybrid measure according to the effectiveness requirement of intelligent search application, and presents a case study using the empirical data retrieved from delicious website. Comparing to the traditional statistics based measures, our hybrid measure is capable of evaluating similarities between random tags even not co-occurred, can better reflect the structural influence of the network of tag co-occurrence, and is feasible for applications like intelligent search in user-centric Web2.0 environment.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster tree based hybrid semantic similarity measure for social tagging systems\",\"authors\":\"Changli Zhang, Jinjin Zhang, M. Yan\",\"doi\":\"10.1109/PIC.2010.5687995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the social tagging systems becoming prevalent, it remains a critical question that how to make explicit the semantics for tags to fully facilitate Web2.0 applications. This paper establishes a cluster tree based semantic similarity measure for social tagging systems, combines it with traditional statistics based measures into a hybrid one, tailors the hybrid measure according to the effectiveness requirement of intelligent search application, and presents a case study using the empirical data retrieved from delicious website. Comparing to the traditional statistics based measures, our hybrid measure is capable of evaluating similarities between random tags even not co-occurred, can better reflect the structural influence of the network of tag co-occurrence, and is feasible for applications like intelligent search in user-centric Web2.0 environment.\",\"PeriodicalId\":142910,\"journal\":{\"name\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2010.5687995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5687995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着社会标签系统的普及,如何明确标签的语义以充分促进Web2.0应用成为一个关键问题。本文建立了一种基于聚类树的社交标签系统语义相似度度量方法,并将其与传统的基于统计的度量方法结合为一种混合度量方法,根据智能搜索应用的有效性需求对混合度量方法进行了定制,并以delicious网站的经验数据为例进行了分析。与传统的基于统计的度量相比,我们的混合度量能够评估随机标签之间的相似度,即使不共现,也能更好地反映标签共现网络的结构影响,适用于以用户为中心的Web2.0环境下的智能搜索等应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cluster tree based hybrid semantic similarity measure for social tagging systems
As the social tagging systems becoming prevalent, it remains a critical question that how to make explicit the semantics for tags to fully facilitate Web2.0 applications. This paper establishes a cluster tree based semantic similarity measure for social tagging systems, combines it with traditional statistics based measures into a hybrid one, tailors the hybrid measure according to the effectiveness requirement of intelligent search application, and presents a case study using the empirical data retrieved from delicious website. Comparing to the traditional statistics based measures, our hybrid measure is capable of evaluating similarities between random tags even not co-occurred, can better reflect the structural influence of the network of tag co-occurrence, and is feasible for applications like intelligent search in user-centric Web2.0 environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data compression of multispectral images for FY-2C geostationary meteorological satellite Redundant De Bruijn graph based location and routing for large-scale peer-to-peer system Content semantic filter based on Domain Ontology An isolated word recognition system based on DSP and improved dynamic time warping algorithm Research on Logistics Carbon Footprint Analysis System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1