利用神经网络进行扩展检测

L. Cano
{"title":"利用神经网络进行扩展检测","authors":"L. Cano","doi":"10.1109/CCST.2012.6393566","DOIUrl":null,"url":null,"abstract":"Extended Detection (ED) has become required especially when protecting high valued assets. Physical Protection Systems (PPS) usually integrate Detection, Delay, and Response (DDR) elements in a manner to assess threats at well defined perimeters. Situational Awareness (SA) beyond PPS perimeters requires the use of longer range sensors systems such as Radars or Unattended Ground Sensors which cover relatively large areas. Gathering such sensor data, especially in high noise environments poses a serious challenge to building reliable ED systems. The use of Neural Networks to merge sensor data and identify potential threats can make SA systems available for broader use.","PeriodicalId":405531,"journal":{"name":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Neural Networks for Extended Detection\",\"authors\":\"L. Cano\",\"doi\":\"10.1109/CCST.2012.6393566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Detection (ED) has become required especially when protecting high valued assets. Physical Protection Systems (PPS) usually integrate Detection, Delay, and Response (DDR) elements in a manner to assess threats at well defined perimeters. Situational Awareness (SA) beyond PPS perimeters requires the use of longer range sensors systems such as Radars or Unattended Ground Sensors which cover relatively large areas. Gathering such sensor data, especially in high noise environments poses a serious challenge to building reliable ED systems. The use of Neural Networks to merge sensor data and identify potential threats can make SA systems available for broader use.\",\"PeriodicalId\":405531,\"journal\":{\"name\":\"2012 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2012.6393566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2012.6393566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特别是在保护高价值资产时,需要扩展检测(ED)。物理防护系统(PPS)通常将检测、延迟和响应(DDR)元素集成在一起,以在明确定义的周界内评估威胁。PPS外围的态势感知(SA)需要使用更远距离的传感器系统,如雷达或无人值守的地面传感器,覆盖相对较大的区域。收集这些传感器数据,特别是在高噪声环境中,对构建可靠的ED系统提出了严峻的挑战。使用神经网络合并传感器数据并识别潜在威胁可以使SA系统得到更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Neural Networks for Extended Detection
Extended Detection (ED) has become required especially when protecting high valued assets. Physical Protection Systems (PPS) usually integrate Detection, Delay, and Response (DDR) elements in a manner to assess threats at well defined perimeters. Situational Awareness (SA) beyond PPS perimeters requires the use of longer range sensors systems such as Radars or Unattended Ground Sensors which cover relatively large areas. Gathering such sensor data, especially in high noise environments poses a serious challenge to building reliable ED systems. The use of Neural Networks to merge sensor data and identify potential threats can make SA systems available for broader use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Department of Defense Instruction 8500.2 “Information Assurance (IA) Implementation:” A retrospective Attack tree-based evaluation of physical protection systems vulnerability Super-resolution processing of the partial pictorial image of the single pictorial image which eliminated artificiality A concept of automated vulnerability search in contactless communication applications Working towards an international ANPR Standard — An initial investigation into the UK standard
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1