多时滞下BAM神经网络全局渐近鲁棒稳定性的一个新的上界

P. Muruganantham, N. M. Thoiyab, N. Gunasekaran
{"title":"多时滞下BAM神经网络全局渐近鲁棒稳定性的一个新的上界","authors":"P. Muruganantham, N. M. Thoiyab, N. Gunasekaran","doi":"10.1109/ICEEICT53079.2022.9768421","DOIUrl":null,"url":null,"abstract":"This research looks at a new upper bound for bidirectional associative memory (BAM) delayed neural networks under global asymptotic robust stability (GARS) condition. For the suggested system, our new bound will provide different outcomes. In the process of determining necessary circumstances for the suggested BAM neural system's equilibrium point, an appropriate L- K functional (LKF) and activation functions were used. Our BAM model's stated necessary requirements are never reliant on time delay factors. The advantages of the proposed results over the previously discussed upper bound norm results are demonstrated numerically towards the end of this study.","PeriodicalId":201910,"journal":{"name":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new upper bound for global asymptotic robust stability of BAM neural networks under multiple time-delays*\",\"authors\":\"P. Muruganantham, N. M. Thoiyab, N. Gunasekaran\",\"doi\":\"10.1109/ICEEICT53079.2022.9768421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research looks at a new upper bound for bidirectional associative memory (BAM) delayed neural networks under global asymptotic robust stability (GARS) condition. For the suggested system, our new bound will provide different outcomes. In the process of determining necessary circumstances for the suggested BAM neural system's equilibrium point, an appropriate L- K functional (LKF) and activation functions were used. Our BAM model's stated necessary requirements are never reliant on time delay factors. The advantages of the proposed results over the previously discussed upper bound norm results are demonstrated numerically towards the end of this study.\",\"PeriodicalId\":201910,\"journal\":{\"name\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT53079.2022.9768421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT53079.2022.9768421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了全局渐近鲁棒稳定性(GARS)条件下双向联想记忆延迟神经网络的一个新的上界。对于建议的系统,我们的新边界将提供不同的结果。在确定所建议的BAM神经系统平衡点的必要条件的过程中,使用了适当的L- K泛函(LKF)和激活函数。我们的BAM模型所声明的必要需求从不依赖于时间延迟因素。所提出的结果优于先前讨论的上界范数结果的优点在本研究结束时得到了数值证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new upper bound for global asymptotic robust stability of BAM neural networks under multiple time-delays*
This research looks at a new upper bound for bidirectional associative memory (BAM) delayed neural networks under global asymptotic robust stability (GARS) condition. For the suggested system, our new bound will provide different outcomes. In the process of determining necessary circumstances for the suggested BAM neural system's equilibrium point, an appropriate L- K functional (LKF) and activation functions were used. Our BAM model's stated necessary requirements are never reliant on time delay factors. The advantages of the proposed results over the previously discussed upper bound norm results are demonstrated numerically towards the end of this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Packet Transmission using Radio Access Protocol for Intra-Cluster Communications in Mobile Ad hoc Networks Performance of Combined RF and non-RF based Energy Harvesting scheme for Multi-Relay Cooperative Cognitive Radio Network Image Recognition, Classification and Analysis Using Convolutional Neural Networks An Optimized technique for a Sapid Motor pooling Tariff Forecasting System Pneumothorax Segmentation from Chest X-Rays Using U-Net/U-Net++ Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1