基于堆栈的地形的直接体绘制

A. Graciano, Antonio J. Rueda Ruiz, F. Feito-Higueruela
{"title":"基于堆栈的地形的直接体绘制","authors":"A. Graciano, Antonio J. Rueda Ruiz, F. Feito-Higueruela","doi":"10.2312/ceig.20171207","DOIUrl":null,"url":null,"abstract":"Traditionally, the rendering of volumetric terrain data, as many other scientific 3D data, has been carried out performing direct volume rendering techniques on voxel-based representations. A main problem with this kind of representation is its large memory footprint. Several solutions have emerged in order to reduce the memory consumption and improve the rendering performance. An example of this is the hierarchical data structures for space division based on octrees. Although these representations have produced excellent outcomes, especially for binary datasets, their use in data containing internal structures and organized in a layered style, as in the case of surface-subsurface terrain, still leads to a high memory usage. In this paper, we propose the use of a compact stack-based representation for 3D terrain data, allowing a real-time rendering using classic volume rendering procedures. In contrast with previous work that used this representation as an assistant for rendering purposes, we suggest its use as main data structure maintaining the whole dataset in the GPU in a compact way. Furthermore, the implementation of some visual operations included in geoscientific applications such as borehole visualization, attenuation of material layers or cross sections has been carried out.","PeriodicalId":385751,"journal":{"name":"Spanish Computer Graphics Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Volume Rendering of Stack-Based Terrains\",\"authors\":\"A. Graciano, Antonio J. Rueda Ruiz, F. Feito-Higueruela\",\"doi\":\"10.2312/ceig.20171207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, the rendering of volumetric terrain data, as many other scientific 3D data, has been carried out performing direct volume rendering techniques on voxel-based representations. A main problem with this kind of representation is its large memory footprint. Several solutions have emerged in order to reduce the memory consumption and improve the rendering performance. An example of this is the hierarchical data structures for space division based on octrees. Although these representations have produced excellent outcomes, especially for binary datasets, their use in data containing internal structures and organized in a layered style, as in the case of surface-subsurface terrain, still leads to a high memory usage. In this paper, we propose the use of a compact stack-based representation for 3D terrain data, allowing a real-time rendering using classic volume rendering procedures. In contrast with previous work that used this representation as an assistant for rendering purposes, we suggest its use as main data structure maintaining the whole dataset in the GPU in a compact way. Furthermore, the implementation of some visual operations included in geoscientific applications such as borehole visualization, attenuation of material layers or cross sections has been carried out.\",\"PeriodicalId\":385751,\"journal\":{\"name\":\"Spanish Computer Graphics Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Computer Graphics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/ceig.20171207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Computer Graphics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/ceig.20171207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统上,体积地形数据的绘制和许多其他科学3D数据一样,都是在基于体素的表示上执行直接体绘制技术。这种表示的一个主要问题是它占用大量内存。为了减少内存消耗和提高渲染性能,出现了几种解决方案。这方面的一个例子是基于八叉树的空间划分的分层数据结构。尽管这些表示产生了很好的结果,特别是对于二进制数据集,但它们在包含内部结构并以分层方式组织的数据中的使用,如在地表-地下地形的情况下,仍然会导致高内存使用量。在本文中,我们建议使用紧凑的基于堆栈的3D地形数据表示,允许使用经典的体绘制程序进行实时渲染。与之前使用这种表示作为渲染目的助手的工作相反,我们建议将其用作主要数据结构,以紧凑的方式在GPU中维护整个数据集。此外,还实现了一些地球科学应用中包括的可视化操作,如钻孔可视化、物质层或截面衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct Volume Rendering of Stack-Based Terrains
Traditionally, the rendering of volumetric terrain data, as many other scientific 3D data, has been carried out performing direct volume rendering techniques on voxel-based representations. A main problem with this kind of representation is its large memory footprint. Several solutions have emerged in order to reduce the memory consumption and improve the rendering performance. An example of this is the hierarchical data structures for space division based on octrees. Although these representations have produced excellent outcomes, especially for binary datasets, their use in data containing internal structures and organized in a layered style, as in the case of surface-subsurface terrain, still leads to a high memory usage. In this paper, we propose the use of a compact stack-based representation for 3D terrain data, allowing a real-time rendering using classic volume rendering procedures. In contrast with previous work that used this representation as an assistant for rendering purposes, we suggest its use as main data structure maintaining the whole dataset in the GPU in a compact way. Furthermore, the implementation of some visual operations included in geoscientific applications such as borehole visualization, attenuation of material layers or cross sections has been carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise Reduction Automation of LiDAR Point Clouds for Modeling and Representation of High Voltage Lines in a 3D Virtual Globe On the Design of a Mixed-Reality Annotations Tool for the Inspection of Pre-fab Buildings Extending Industrial Digital Twins with Optical Object Tracking Direct Volume Rendering of Stack-Based Terrains Deployment of Volume Rendering Interactive Visualizations in Web Platforms With Intersected 3D Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1