ATP对Na(+)-K+ ATP酶的修饰作用机制。

Biomedical science Pub Date : 1991-01-01
A A Boldyrev, N U Fedosova, O D Lopina
{"title":"ATP对Na(+)-K+ ATP酶的修饰作用机制。","authors":"A A Boldyrev,&nbsp;N U Fedosova,&nbsp;O D Lopina","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>On the basis of a review of the literature and a study of the molecular and kinetic properties of Na(+)-K+ ATPase, a model is proposed that explains the regulation of the activity of the enzyme by ATP in terms of an acceleration of the E2----E1 transition. It is presumed that the transition occurs via a short-lived oligomer whose formation is accelerated by ATP. In the context of this model, the non-Michaelis-Menton kinetics of the enzyme can be explained by interprotomer interactions. After solubilization of the enzyme with octaethylene glycol dodecyl ether, the hydrolysis of ATP follows ordinary Michaelis-Menton kinetics. The validity of the model is also supported by radiation-inactivation experiments with a nucleotide (GTP) which does not accelerate the E2----E1 transition, as well as by experiments with a low concentration of ATP. In both situations, the size of the molecular target corresponds to the monomeric form of the enzyme.</p>","PeriodicalId":77499,"journal":{"name":"Biomedical science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanism of the modifying effect of ATP on Na(+)-K+ ATPase.\",\"authors\":\"A A Boldyrev,&nbsp;N U Fedosova,&nbsp;O D Lopina\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On the basis of a review of the literature and a study of the molecular and kinetic properties of Na(+)-K+ ATPase, a model is proposed that explains the regulation of the activity of the enzyme by ATP in terms of an acceleration of the E2----E1 transition. It is presumed that the transition occurs via a short-lived oligomer whose formation is accelerated by ATP. In the context of this model, the non-Michaelis-Menton kinetics of the enzyme can be explained by interprotomer interactions. After solubilization of the enzyme with octaethylene glycol dodecyl ether, the hydrolysis of ATP follows ordinary Michaelis-Menton kinetics. The validity of the model is also supported by radiation-inactivation experiments with a nucleotide (GTP) which does not accelerate the E2----E1 transition, as well as by experiments with a low concentration of ATP. In both situations, the size of the molecular target corresponds to the monomeric form of the enzyme.</p>\",\"PeriodicalId\":77499,\"journal\":{\"name\":\"Biomedical science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在回顾文献和研究Na(+)-K+ ATP酶的分子和动力学性质的基础上,提出了一个模型,解释了ATP在加速E2----E1转变方面对酶活性的调节。据推测,这种转变是通过一种短寿命的低聚物发生的,它的形成被ATP加速。在该模型的背景下,酶的非米切里斯-门通动力学可以用原体间相互作用来解释。在用辛二醇十二烷基醚增溶酶后,ATP的水解遵循普通的米切里斯-门通动力学。该模型的有效性也得到了不加速E2----E1转变的核苷酸(GTP)的辐射失活实验以及低浓度ATP的实验的支持。在这两种情况下,分子靶标的大小与酶的单体形式相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The mechanism of the modifying effect of ATP on Na(+)-K+ ATPase.

On the basis of a review of the literature and a study of the molecular and kinetic properties of Na(+)-K+ ATPase, a model is proposed that explains the regulation of the activity of the enzyme by ATP in terms of an acceleration of the E2----E1 transition. It is presumed that the transition occurs via a short-lived oligomer whose formation is accelerated by ATP. In the context of this model, the non-Michaelis-Menton kinetics of the enzyme can be explained by interprotomer interactions. After solubilization of the enzyme with octaethylene glycol dodecyl ether, the hydrolysis of ATP follows ordinary Michaelis-Menton kinetics. The validity of the model is also supported by radiation-inactivation experiments with a nucleotide (GTP) which does not accelerate the E2----E1 transition, as well as by experiments with a low concentration of ATP. In both situations, the size of the molecular target corresponds to the monomeric form of the enzyme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new approach to the investigation of oxidative injury to the pulmonary endothelium: use of angiotensin-converting enzyme as a marker. Block copolymers of ethylene oxide and propylene oxide (pluronics) as immunomodulators and antitumour agents. A comparative analysis of the putative regulatory regions in human genes for the alpha-subunit family of Na(+)-K+ ATPase. Na(+)-K(+)-ATPase isoforms in different areas of calf brain. Transformation of rat-embryo immortalized fibroblasts by the E6-E7 region of human papillomavirus type 18.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1