无线传感器网络中温度传感器读数的模型驱动数据采集

Thomas Pötsch, Lei Pei, K. Kuladinithi, C. Görg
{"title":"无线传感器网络中温度传感器读数的模型驱动数据采集","authors":"Thomas Pötsch, Lei Pei, K. Kuladinithi, C. Görg","doi":"10.1109/ISSNIP.2014.6827658","DOIUrl":null,"url":null,"abstract":"The increasing interest and utilization of Wireless Sensor Networks has increased the requirements of energy saving for battery powered sensor nodes. Even in modern sensor nodes, communication causes the largest part of energy consumption and therefore ways to reduce the amount of data sending are widely concerned. One solution to reduce data transmission is a model-driven data acquisition technique called Derivative-Based Prediction (DBP). Instead of transmitting every measured sample, a sensor node uses algorithms to compute approximated models to represent the measured data. In this work, we developed an algorithm to monitor temperature samples in different environmental scenarios. We also evaluated the algorithm with regard to its efficiency and classified the recorded temperature patterns to enhance the precision. In our tests, the algorithm successfully suppressed up to 99% of data transmissions while the average error of prediction has been kept below 0.1°C.","PeriodicalId":269784,"journal":{"name":"2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Model-driven data acquisition for temperature sensor readings in Wireless Sensor Networks\",\"authors\":\"Thomas Pötsch, Lei Pei, K. Kuladinithi, C. Görg\",\"doi\":\"10.1109/ISSNIP.2014.6827658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing interest and utilization of Wireless Sensor Networks has increased the requirements of energy saving for battery powered sensor nodes. Even in modern sensor nodes, communication causes the largest part of energy consumption and therefore ways to reduce the amount of data sending are widely concerned. One solution to reduce data transmission is a model-driven data acquisition technique called Derivative-Based Prediction (DBP). Instead of transmitting every measured sample, a sensor node uses algorithms to compute approximated models to represent the measured data. In this work, we developed an algorithm to monitor temperature samples in different environmental scenarios. We also evaluated the algorithm with regard to its efficiency and classified the recorded temperature patterns to enhance the precision. In our tests, the algorithm successfully suppressed up to 99% of data transmissions while the average error of prediction has been kept below 0.1°C.\",\"PeriodicalId\":269784,\"journal\":{\"name\":\"2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSNIP.2014.6827658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSNIP.2014.6827658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

随着人们对无线传感器网络的日益关注和利用,对电池供电的传感器节点提出了更高的节能要求。即使在现代传感器节点中,通信也是能耗最大的部分,因此减少数据发送量的方法受到广泛关注。减少数据传输的一个解决方案是一种模型驱动的数据采集技术,称为基于导数的预测(DBP)。传感器节点使用算法计算近似模型来表示测量数据,而不是传输每个测量样本。在这项工作中,我们开发了一种算法来监测不同环境下的温度样本。我们还评估了算法的效率,并对记录的温度模式进行了分类,以提高精度。在我们的测试中,该算法成功地抑制了高达99%的数据传输,而预测的平均误差保持在0.1°C以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-driven data acquisition for temperature sensor readings in Wireless Sensor Networks
The increasing interest and utilization of Wireless Sensor Networks has increased the requirements of energy saving for battery powered sensor nodes. Even in modern sensor nodes, communication causes the largest part of energy consumption and therefore ways to reduce the amount of data sending are widely concerned. One solution to reduce data transmission is a model-driven data acquisition technique called Derivative-Based Prediction (DBP). Instead of transmitting every measured sample, a sensor node uses algorithms to compute approximated models to represent the measured data. In this work, we developed an algorithm to monitor temperature samples in different environmental scenarios. We also evaluated the algorithm with regard to its efficiency and classified the recorded temperature patterns to enhance the precision. In our tests, the algorithm successfully suppressed up to 99% of data transmissions while the average error of prediction has been kept below 0.1°C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless sensors networks for Internet of Things Efficient sequential-hierarchical deployment strategy for heterogeneous sensor networks Development of silicon photonics dual disks resonators as chemical sensors An efficient power control scheme for a 2.4GHz class-E PA in 0.13-μm CMOS Action recognition from motion capture data using Meta-Cognitive RBF Network classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1