一种用于基因表达分类的稳健数据缩放算法

X. Cao, Z. Obradovic
{"title":"一种用于基因表达分类的稳健数据缩放算法","authors":"X. Cao, Z. Obradovic","doi":"10.1109/BIBE.2015.7367734","DOIUrl":null,"url":null,"abstract":"Gene expression data are widely used in classification tasks for medical diagnosis. Data scaling is recommended and helpful for learning the classification models. In this study, we propose a data scaling algorithm to transform the data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative density function of the data. The proposed algorithm is robust to outliers, and experimental results show that models learned using data scaled by the proposed algorithm generally outperform the ones using min-max mapping and z-score which are currently the most commonly used data scaling algorithms.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A robust data scaling algorithm for gene expression classification\",\"authors\":\"X. Cao, Z. Obradovic\",\"doi\":\"10.1109/BIBE.2015.7367734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene expression data are widely used in classification tasks for medical diagnosis. Data scaling is recommended and helpful for learning the classification models. In this study, we propose a data scaling algorithm to transform the data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative density function of the data. The proposed algorithm is robust to outliers, and experimental results show that models learned using data scaled by the proposed algorithm generally outperform the ones using min-max mapping and z-score which are currently the most commonly used data scaling algorithms.\",\"PeriodicalId\":422807,\"journal\":{\"name\":\"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2015.7367734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基因表达数据广泛应用于医学诊断的分类任务中。数据缩放是推荐的,它有助于学习分类模型。在本研究中,我们提出了一种数据缩放算法,通过学习广义逻辑函数来拟合数据的经验累积密度函数,将数据统一转换到合适的区间。该算法对异常值具有鲁棒性,实验结果表明,使用该算法缩放的数据学习的模型总体上优于目前最常用的数据缩放算法——最小-最大映射和z-score。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust data scaling algorithm for gene expression classification
Gene expression data are widely used in classification tasks for medical diagnosis. Data scaling is recommended and helpful for learning the classification models. In this study, we propose a data scaling algorithm to transform the data uniformly to an appropriate interval by learning a generalized logistic function to fit the empirical cumulative density function of the data. The proposed algorithm is robust to outliers, and experimental results show that models learned using data scaled by the proposed algorithm generally outperform the ones using min-max mapping and z-score which are currently the most commonly used data scaling algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated SOSORT-recommended angles measurement in patients with adolescent idiopathic scoliosis Estimating changes in a cognitive performance using heart rate variability Some examples on the performance of density functional theory in the description of bioinorganic systems and processes Modeling the metabolism of escherichia coli under oxygen gradients with dynamically changing flux bounds An automated approach to conduct effective on-site presumptive drug tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1