计算机语音识别的非线性随机模型和新参数

Ge Yubo, Xie Xinyan Ge
{"title":"计算机语音识别的非线性随机模型和新参数","authors":"Ge Yubo, Xie Xinyan Ge","doi":"10.1109/ISIT.2001.936050","DOIUrl":null,"url":null,"abstract":"There are some problems that disturb researchers and developers working on multidimensional signal processing as computer senses. One of these problems is to find more reasonable characteristic parameters for speeches, letters, maps and senses. As is known, LPC-CEP coefficients as the main parameters drawing from signals are widely used and, unfortunately, in the parameter space of which some signals cannot be distinguished. Moreover LPC-CEP coefficients are obtained based on the linear AR (auto-regression) model, so assumption of certain stability for these signals is necessary and the order of the AR model cannot help to simplify the model from ARMA(p,q). But we must address the nonlinear signal to deal with the above information. Finally, the space possess too high a multidimensional number to calculate in time. To avoid these troubles and to strengthen the ability of the models, we study a type of nonlinear stochastic models, AR(p)-MA(q).","PeriodicalId":433761,"journal":{"name":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonlinear stochastic models and new parameters of computer speech recognition\",\"authors\":\"Ge Yubo, Xie Xinyan Ge\",\"doi\":\"10.1109/ISIT.2001.936050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are some problems that disturb researchers and developers working on multidimensional signal processing as computer senses. One of these problems is to find more reasonable characteristic parameters for speeches, letters, maps and senses. As is known, LPC-CEP coefficients as the main parameters drawing from signals are widely used and, unfortunately, in the parameter space of which some signals cannot be distinguished. Moreover LPC-CEP coefficients are obtained based on the linear AR (auto-regression) model, so assumption of certain stability for these signals is necessary and the order of the AR model cannot help to simplify the model from ARMA(p,q). But we must address the nonlinear signal to deal with the above information. Finally, the space possess too high a multidimensional number to calculate in time. To avoid these troubles and to strengthen the ability of the models, we study a type of nonlinear stochastic models, AR(p)-MA(q).\",\"PeriodicalId\":433761,\"journal\":{\"name\":\"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2001.936050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2001.936050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

有一些问题困扰着研究计算机感知多维信号处理的研究人员和开发人员。其中一个问题是为语音、字母、地图和感官找到更合理的特征参数。众所周知,LPC-CEP系数作为从信号中提取的主要参数被广泛使用,但遗憾的是,在参数空间中有些信号无法被区分。而且LPC-CEP系数是基于线性AR(自回归)模型得到的,因此需要对这些信号进行一定的稳定性假设,而AR模型的阶数无助于从ARMA(p,q)简化模型。但是我们必须处理非线性信号来处理上述信息。最后,空间的多维数太高,无法及时计算。为了避免这些麻烦和增强模型的能力,我们研究了一类非线性随机模型AR(p)-MA(q)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear stochastic models and new parameters of computer speech recognition
There are some problems that disturb researchers and developers working on multidimensional signal processing as computer senses. One of these problems is to find more reasonable characteristic parameters for speeches, letters, maps and senses. As is known, LPC-CEP coefficients as the main parameters drawing from signals are widely used and, unfortunately, in the parameter space of which some signals cannot be distinguished. Moreover LPC-CEP coefficients are obtained based on the linear AR (auto-regression) model, so assumption of certain stability for these signals is necessary and the order of the AR model cannot help to simplify the model from ARMA(p,q). But we must address the nonlinear signal to deal with the above information. Finally, the space possess too high a multidimensional number to calculate in time. To avoid these troubles and to strengthen the ability of the models, we study a type of nonlinear stochastic models, AR(p)-MA(q).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A simple encodable/decodable OFDM QPSK code with low peak-to-mean envelope power ratio The effect of redundancy on measurement Decision directed algorithms for multiuser detection A new modulation scheme using asymmetric error correcting code embedded in optical orthogonal code for optical CDMA Matrix CUSUM: a recursive multi-hypothesis change detection algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1