在网络搜索中利用网络图距离进行相关性反馈

Sergei Vassilvitskii, Eric Brill
{"title":"在网络搜索中利用网络图距离进行相关性反馈","authors":"Sergei Vassilvitskii, Eric Brill","doi":"10.1145/1148170.1148199","DOIUrl":null,"url":null,"abstract":"We study the effect of user supplied relevance feedback in improving web search results. Rather than using query refinement or document similarity measures to rerank results, we show that the web-graph distance between two documents is a robust measure of their relative relevancy. We demonstrate how the use of this metric can improve the rankings of result URLs, even when the user only rates one document in the dataset. Our research suggests that such interactive systems can significantly improve search results.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Using web-graph distance for relevance feedback in web search\",\"authors\":\"Sergei Vassilvitskii, Eric Brill\",\"doi\":\"10.1145/1148170.1148199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the effect of user supplied relevance feedback in improving web search results. Rather than using query refinement or document similarity measures to rerank results, we show that the web-graph distance between two documents is a robust measure of their relative relevancy. We demonstrate how the use of this metric can improve the rankings of result URLs, even when the user only rates one document in the dataset. Our research suggests that such interactive systems can significantly improve search results.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

我们研究了用户提供的相关反馈在改善网络搜索结果中的作用。我们表明,两个文档之间的网络图距离是它们相对相关性的稳健度量,而不是使用查询细化或文档相似度度量来重新排序结果。我们演示了如何使用这个指标来提高结果url的排名,即使用户只对数据集中的一个文档进行评级。我们的研究表明,这种交互系统可以显著改善搜索结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using web-graph distance for relevance feedback in web search
We study the effect of user supplied relevance feedback in improving web search results. Rather than using query refinement or document similarity measures to rerank results, we show that the web-graph distance between two documents is a robust measure of their relative relevancy. We demonstrate how the use of this metric can improve the rankings of result URLs, even when the user only rates one document in the dataset. Our research suggests that such interactive systems can significantly improve search results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1