用于数据科学的文本提取和挖掘方法

K. Deepa, P. Perumal, B. Mathivanan
{"title":"用于数据科学的文本提取和挖掘方法","authors":"K. Deepa, P. Perumal, B. Mathivanan","doi":"10.1109/ICECAA58104.2023.10212101","DOIUrl":null,"url":null,"abstract":"Online Customer Reviews (OCRs) make it difficult for firms to examine them due to their number, diversity, pace, and validity. The big data analytics study predicts OCR reading and its usefulness. Titles with positive emotion and sentimental reviews with neutral polarity attract more readers. Online merchants may use this work to build scale automated processes for sorting and categorizing huge OCR data, benefiting vendors and consumers. Current OCR sorting approaches may prejudice readership and usefulness. Python crawled, processed, and displayed data using Natural Language Processing (NLP). The crawling dataset collected literature using a Pubmed Application Programming Interface (API) module. Natural Language Toolkit (NLTK) processed text data. Tokens were processed into bigrams and trigrams using n-grams. According to study abstracts, West Java has the most stunting research. Text mining and NLP may enhance oral history and historical archaeology. Text mining algorithms were intended for enormous data and public texts, making them inappropriate for historical and archaeological interpretation. Text analysis can effectively handle and evaluate vast amounts of data, which may substantially enrich historical archaeology study, especially when dealing with digital data banks or extensive texts.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text Extraction and Mining Methods Used in Data Science\",\"authors\":\"K. Deepa, P. Perumal, B. Mathivanan\",\"doi\":\"10.1109/ICECAA58104.2023.10212101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online Customer Reviews (OCRs) make it difficult for firms to examine them due to their number, diversity, pace, and validity. The big data analytics study predicts OCR reading and its usefulness. Titles with positive emotion and sentimental reviews with neutral polarity attract more readers. Online merchants may use this work to build scale automated processes for sorting and categorizing huge OCR data, benefiting vendors and consumers. Current OCR sorting approaches may prejudice readership and usefulness. Python crawled, processed, and displayed data using Natural Language Processing (NLP). The crawling dataset collected literature using a Pubmed Application Programming Interface (API) module. Natural Language Toolkit (NLTK) processed text data. Tokens were processed into bigrams and trigrams using n-grams. According to study abstracts, West Java has the most stunting research. Text mining and NLP may enhance oral history and historical archaeology. Text mining algorithms were intended for enormous data and public texts, making them inappropriate for historical and archaeological interpretation. Text analysis can effectively handle and evaluate vast amounts of data, which may substantially enrich historical archaeology study, especially when dealing with digital data banks or extensive texts.\",\"PeriodicalId\":114624,\"journal\":{\"name\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECAA58104.2023.10212101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线客户评论(ocr)由于其数量、多样性、速度和有效性,使得公司很难对其进行检查。大数据分析研究预测了OCR阅读及其有用性。具有积极情感的标题和中性极性的感伤评论吸引更多的读者。在线商家可以利用这项工作来构建大规模的自动化流程,对大量的OCR数据进行分类和分类,从而使供应商和消费者受益。目前的OCR分类方法可能会影响读者和有用性。Python使用自然语言处理(NLP)抓取、处理和显示数据。爬行数据集使用Pubmed应用程序编程接口(API)模块收集文献。自然语言工具包(NLTK)处理文本数据。符号使用n-gram被处理成双字母和三字母。根据研究摘要,西爪哇的研究最为迟缓。文本挖掘和自然语言处理可以增强口述历史和历史考古学。文本挖掘算法是为海量数据和公共文本设计的,这使得它们不适合用于历史和考古解释。文本分析可以有效地处理和评估大量的数据,可以极大地丰富历史考古研究,特别是在处理数字数据库或广泛的文本时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text Extraction and Mining Methods Used in Data Science
Online Customer Reviews (OCRs) make it difficult for firms to examine them due to their number, diversity, pace, and validity. The big data analytics study predicts OCR reading and its usefulness. Titles with positive emotion and sentimental reviews with neutral polarity attract more readers. Online merchants may use this work to build scale automated processes for sorting and categorizing huge OCR data, benefiting vendors and consumers. Current OCR sorting approaches may prejudice readership and usefulness. Python crawled, processed, and displayed data using Natural Language Processing (NLP). The crawling dataset collected literature using a Pubmed Application Programming Interface (API) module. Natural Language Toolkit (NLTK) processed text data. Tokens were processed into bigrams and trigrams using n-grams. According to study abstracts, West Java has the most stunting research. Text mining and NLP may enhance oral history and historical archaeology. Text mining algorithms were intended for enormous data and public texts, making them inappropriate for historical and archaeological interpretation. Text analysis can effectively handle and evaluate vast amounts of data, which may substantially enrich historical archaeology study, especially when dealing with digital data banks or extensive texts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning based Sentiment Analysis on Images A Comprehensive Analysis on Unconstraint Video Analysis Using Deep Learning Approaches An Intelligent Parking Lot Management System Based on Real-Time License Plate Recognition BLIP-NLP Model for Sentiment Analysis Botnet Attack Detection in IoT Networks using CNN and LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1