利用半监督投影聚类发现极低维聚类

Kevin Y. Yip, D. Cheung, M. Ng
{"title":"利用半监督投影聚类发现极低维聚类","authors":"Kevin Y. Yip, D. Cheung, M. Ng","doi":"10.1109/ICDE.2005.96","DOIUrl":null,"url":null,"abstract":"Recent studies suggest that projected clusters with extremely low dimensionality exist in many real datasets. A number of projected clustering algorithms have been proposed in the past several years, but few can identify clusters with dimensionality lower than 10% of the total number of dimensions, which are commonly found in some real datasets such as gene expression profiles. In this paper we propose a new algorithm that can accurately identify projected clusters with relevant dimensions as few as 5% of the total number of dimensions. It makes use of a robust objective function that combines object clustering and dimension selection into a single optimization problem. The algorithm can also utilize domain knowledge in the form of labeled objects and labeled dimensions to improve its clustering accuracy. We believe this is the first semi-supervised projected clustering algorithm. Both theoretical analysis and experimental results show that by using a small amount of input knowledge, possibly covering only a portion of the underlying classes, the new algorithm can be further improved to accurately detect clusters with only 1% of the dimensions being relevant. The algorithm is also useful in getting a target set of clusters when there are multiple possible groupings of the objects.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"On discovery of extremely low-dimensional clusters using semi-supervised projected clustering\",\"authors\":\"Kevin Y. Yip, D. Cheung, M. Ng\",\"doi\":\"10.1109/ICDE.2005.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies suggest that projected clusters with extremely low dimensionality exist in many real datasets. A number of projected clustering algorithms have been proposed in the past several years, but few can identify clusters with dimensionality lower than 10% of the total number of dimensions, which are commonly found in some real datasets such as gene expression profiles. In this paper we propose a new algorithm that can accurately identify projected clusters with relevant dimensions as few as 5% of the total number of dimensions. It makes use of a robust objective function that combines object clustering and dimension selection into a single optimization problem. The algorithm can also utilize domain knowledge in the form of labeled objects and labeled dimensions to improve its clustering accuracy. We believe this is the first semi-supervised projected clustering algorithm. Both theoretical analysis and experimental results show that by using a small amount of input knowledge, possibly covering only a portion of the underlying classes, the new algorithm can be further improved to accurately detect clusters with only 1% of the dimensions being relevant. The algorithm is also useful in getting a target set of clusters when there are multiple possible groupings of the objects.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

最近的研究表明,在许多真实数据集中存在极低维数的投影聚类。在过去的几年中,已经提出了许多预测聚类算法,但是很少有算法能够识别出维数低于总维数10%的聚类,这在一些真实数据集(如基因表达谱)中很常见。在本文中,我们提出了一种新的算法,可以准确地识别出相关维数少于总维数5%的投影聚类。它利用鲁棒目标函数,将目标聚类和维数选择结合为一个优化问题。该算法还可以利用标记对象和标记维度形式的领域知识来提高聚类精度。我们认为这是第一个半监督投影聚类算法。理论分析和实验结果都表明,通过使用少量的输入知识,可能只覆盖一部分底层类,新算法可以进一步改进,以准确地检测出只有1%的维度是相关的聚类。当存在多个可能的对象分组时,该算法在获得目标簇集方面也很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On discovery of extremely low-dimensional clusters using semi-supervised projected clustering
Recent studies suggest that projected clusters with extremely low dimensionality exist in many real datasets. A number of projected clustering algorithms have been proposed in the past several years, but few can identify clusters with dimensionality lower than 10% of the total number of dimensions, which are commonly found in some real datasets such as gene expression profiles. In this paper we propose a new algorithm that can accurately identify projected clusters with relevant dimensions as few as 5% of the total number of dimensions. It makes use of a robust objective function that combines object clustering and dimension selection into a single optimization problem. The algorithm can also utilize domain knowledge in the form of labeled objects and labeled dimensions to improve its clustering accuracy. We believe this is the first semi-supervised projected clustering algorithm. Both theoretical analysis and experimental results show that by using a small amount of input knowledge, possibly covering only a portion of the underlying classes, the new algorithm can be further improved to accurately detect clusters with only 1% of the dimensions being relevant. The algorithm is also useful in getting a target set of clusters when there are multiple possible groupings of the objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proactive caching for spatial queries in mobile environments MoDB: database system for synthesizing human motion Integrating data from disparate sources: a mass collaboration approach ViteX: a streaming XPath processing system Efficient data management on lightweight computing devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1