{"title":"人工智能能支持针对大学辍学率的行动吗?","authors":"Wanderci Alves Bitencourt, D. M. Silva, G. Xavier","doi":"10.1590/s0104-403620220003002854","DOIUrl":null,"url":null,"abstract":"Resumo A evasão escolar é uma preocupação mundial devido às consequências negativas para toda a sociedade, sendo preciso investigá-la para compreendê-la e atuar de forma antecipada, mitigando seu risco de ocorrência. Esse trabalho propõe o emprego de Mineração de Dados Educacionais com técnicas de Aprendizado de Máquina para identificar as variáveis que são importantes para a caracterização do perfil do estudante em risco de evasão. As técnicas Máquina de Vetores de Suporte, Gradient Boosting Machine, Floresta Aleatória e comitê de máquina foram aplicadas a 1.429 registros de estudantes dos cursos superiores de um dos campi do IFMG, entre 2013 e 2019. Os resultados obtidos sugerem superioridade de desempenho do comitê de máquina, por meio do qual se obteve a importância das variáveis sobre o fenômeno em estudo, o que permitiu traçar o perfil do estudante evasor, por período. Tais resultados viabilizaram a proposição de um processo de detecção e acompanhamento desses estudantes.","PeriodicalId":348286,"journal":{"name":"Ensaio: Avaliação e Políticas Públicas em Educação","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pode a inteligência artificial apoiar ações contra evasão escolar universitária?\",\"authors\":\"Wanderci Alves Bitencourt, D. M. Silva, G. Xavier\",\"doi\":\"10.1590/s0104-403620220003002854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resumo A evasão escolar é uma preocupação mundial devido às consequências negativas para toda a sociedade, sendo preciso investigá-la para compreendê-la e atuar de forma antecipada, mitigando seu risco de ocorrência. Esse trabalho propõe o emprego de Mineração de Dados Educacionais com técnicas de Aprendizado de Máquina para identificar as variáveis que são importantes para a caracterização do perfil do estudante em risco de evasão. As técnicas Máquina de Vetores de Suporte, Gradient Boosting Machine, Floresta Aleatória e comitê de máquina foram aplicadas a 1.429 registros de estudantes dos cursos superiores de um dos campi do IFMG, entre 2013 e 2019. Os resultados obtidos sugerem superioridade de desempenho do comitê de máquina, por meio do qual se obteve a importância das variáveis sobre o fenômeno em estudo, o que permitiu traçar o perfil do estudante evasor, por período. Tais resultados viabilizaram a proposição de um processo de detecção e acompanhamento desses estudantes.\",\"PeriodicalId\":348286,\"journal\":{\"name\":\"Ensaio: Avaliação e Políticas Públicas em Educação\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ensaio: Avaliação e Políticas Públicas em Educação\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/s0104-403620220003002854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ensaio: Avaliação e Políticas Públicas em Educação","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/s0104-403620220003002854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pode a inteligência artificial apoiar ações contra evasão escolar universitária?
Resumo A evasão escolar é uma preocupação mundial devido às consequências negativas para toda a sociedade, sendo preciso investigá-la para compreendê-la e atuar de forma antecipada, mitigando seu risco de ocorrência. Esse trabalho propõe o emprego de Mineração de Dados Educacionais com técnicas de Aprendizado de Máquina para identificar as variáveis que são importantes para a caracterização do perfil do estudante em risco de evasão. As técnicas Máquina de Vetores de Suporte, Gradient Boosting Machine, Floresta Aleatória e comitê de máquina foram aplicadas a 1.429 registros de estudantes dos cursos superiores de um dos campi do IFMG, entre 2013 e 2019. Os resultados obtidos sugerem superioridade de desempenho do comitê de máquina, por meio do qual se obteve a importância das variáveis sobre o fenômeno em estudo, o que permitiu traçar o perfil do estudante evasor, por período. Tais resultados viabilizaram a proposição de um processo de detecção e acompanhamento desses estudantes.