基于进化算法的多目标路由优化

Halil Yetgin, Kent Tsz Kan Cheung, L. Hanzo
{"title":"基于进化算法的多目标路由优化","authors":"Halil Yetgin, Kent Tsz Kan Cheung, L. Hanzo","doi":"10.1109/WCNC.2012.6214324","DOIUrl":null,"url":null,"abstract":"Wireless ad hoc networks suffer from several limitations, such as routing failures, potentially excessive bandwidth requirements, computational constraints and limited storage capability. Their routing strategy plays a significant role in determining the overall performance of the multi-hop network. However, in conventional network design only one of the desired routing-related objectives is optimized, while other objectives are typically assumed to be the constraints imposed on the problem. In this paper, we invoke the Non-dominated Sorting based Genetic Algorithm-II (NSGA-II) and the MultiObjective Differential Evolution (MODE) algorithm for finding optimal routes from a given source to a given destination in the face of conflicting design objectives, such as the dissipated energy and the end-to-end delay in a fully-connected arbitrary multi-hop network. Our simulation results show that both the NSGA-II and MODE algorithms are efficient in solving these routing problems and are capable of finding the Pareto-optimal solutions at lower complexity than the `brute-force' exhaustive search, when the number of nodes is higher than or equal to 10. Additionally, we demonstrate that at the same complexity, the MODE algorithm is capable of finding solutions closer to the Pareto front and typically, converges faster than the NSGA-II algorithm.","PeriodicalId":329194,"journal":{"name":"2012 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Multi-objective routing optimization using evolutionary algorithms\",\"authors\":\"Halil Yetgin, Kent Tsz Kan Cheung, L. Hanzo\",\"doi\":\"10.1109/WCNC.2012.6214324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless ad hoc networks suffer from several limitations, such as routing failures, potentially excessive bandwidth requirements, computational constraints and limited storage capability. Their routing strategy plays a significant role in determining the overall performance of the multi-hop network. However, in conventional network design only one of the desired routing-related objectives is optimized, while other objectives are typically assumed to be the constraints imposed on the problem. In this paper, we invoke the Non-dominated Sorting based Genetic Algorithm-II (NSGA-II) and the MultiObjective Differential Evolution (MODE) algorithm for finding optimal routes from a given source to a given destination in the face of conflicting design objectives, such as the dissipated energy and the end-to-end delay in a fully-connected arbitrary multi-hop network. Our simulation results show that both the NSGA-II and MODE algorithms are efficient in solving these routing problems and are capable of finding the Pareto-optimal solutions at lower complexity than the `brute-force' exhaustive search, when the number of nodes is higher than or equal to 10. Additionally, we demonstrate that at the same complexity, the MODE algorithm is capable of finding solutions closer to the Pareto front and typically, converges faster than the NSGA-II algorithm.\",\"PeriodicalId\":329194,\"journal\":{\"name\":\"2012 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2012.6214324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2012.6214324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

无线自组织网络受到一些限制,例如路由故障、潜在的过多带宽需求、计算限制和有限的存储能力。它们的路由策略在决定多跳网络的整体性能方面起着重要的作用。然而,在传统的网络设计中,只有一个期望的路由相关目标是优化的,而其他目标通常被认为是强加在问题上的约束。在本文中,我们调用基于非支配排序的遗传算法- ii (NSGA-II)和多目标差分进化(MODE)算法来寻找从给定源到给定目的地的最优路由,面对冲突的设计目标,例如在全连接任意多跳网络中耗散能量和端到端延迟。仿真结果表明,当节点数大于或等于10时,NSGA-II和MODE算法都能有效地解决这些路由问题,并且能够以比“暴力破解”穷举搜索更低的复杂度找到帕累托最优解。此外,我们证明了在相同的复杂度下,MODE算法能够找到更接近Pareto前沿的解,并且通常比NSGA-II算法收敛得更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective routing optimization using evolutionary algorithms
Wireless ad hoc networks suffer from several limitations, such as routing failures, potentially excessive bandwidth requirements, computational constraints and limited storage capability. Their routing strategy plays a significant role in determining the overall performance of the multi-hop network. However, in conventional network design only one of the desired routing-related objectives is optimized, while other objectives are typically assumed to be the constraints imposed on the problem. In this paper, we invoke the Non-dominated Sorting based Genetic Algorithm-II (NSGA-II) and the MultiObjective Differential Evolution (MODE) algorithm for finding optimal routes from a given source to a given destination in the face of conflicting design objectives, such as the dissipated energy and the end-to-end delay in a fully-connected arbitrary multi-hop network. Our simulation results show that both the NSGA-II and MODE algorithms are efficient in solving these routing problems and are capable of finding the Pareto-optimal solutions at lower complexity than the `brute-force' exhaustive search, when the number of nodes is higher than or equal to 10. Additionally, we demonstrate that at the same complexity, the MODE algorithm is capable of finding solutions closer to the Pareto front and typically, converges faster than the NSGA-II algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent overlapping MAP domain forming for mobility management in HMIPv6 access networks Fair resource allocation for the relay backhaul link in LTE-Advanced Replication routing for Delay Tolerant Networking: A hybrid between utility and geographic approach A resilience wireless enhancement for neighborhood watching system Order-statistics-based relay selection for uplink cellular networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1