{"title":"带有杠杆效应和肥尾的随机波动模型的贝叶斯分析","authors":"Eric Jacquier, Peter E. Rossi, Nicholas G. Polson","doi":"10.2139/ssrn.275500","DOIUrl":null,"url":null,"abstract":"The basic univariate stochastic volatility model specifies that conditional volatility follows a log-normal auto-regressive model with innovations assumed to be independent of the innovations in the conditional mean equation. Since the introduction of practical methods for inference in the basic volatility model (JPR-(1994)), it has been observed that the basic model is too restrictive for many financial series. We extend the basic SVOL to allow for a so-called \"Leverage effect\" via correlation between the volatility and mean innovations, and for fat-tails in the mean equation innovation. A Bayesian Markov Chain Monte Carlo algorithm is developed for the extended volatility model. Thus far, likelihood-based inference for the correlated SVOL model has not appeared in the literature. We develop Bayes Factors to assess the importance of the leverage and fat-tail extensions. Sampling experiments reveal little loss in precision from adding the model extensions but a large loss from using the basic model in the presence of mis-specification. For both equity and exchange rate data, there is overwhelming evidence in favor of models with fat-tailed volatility innovations, and for a leverage effect in the case of equity indices. We also find that volatility estimates from the extended model are markedly different from those produced by the basic SVOL.","PeriodicalId":325948,"journal":{"name":"Chicago Booth RPS: Econometrics & Statistics (Topic)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Bayesian Analysis of a Stochastic Volatility Model with Leverage Effect and Fat Tails\",\"authors\":\"Eric Jacquier, Peter E. Rossi, Nicholas G. Polson\",\"doi\":\"10.2139/ssrn.275500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic univariate stochastic volatility model specifies that conditional volatility follows a log-normal auto-regressive model with innovations assumed to be independent of the innovations in the conditional mean equation. Since the introduction of practical methods for inference in the basic volatility model (JPR-(1994)), it has been observed that the basic model is too restrictive for many financial series. We extend the basic SVOL to allow for a so-called \\\"Leverage effect\\\" via correlation between the volatility and mean innovations, and for fat-tails in the mean equation innovation. A Bayesian Markov Chain Monte Carlo algorithm is developed for the extended volatility model. Thus far, likelihood-based inference for the correlated SVOL model has not appeared in the literature. We develop Bayes Factors to assess the importance of the leverage and fat-tail extensions. Sampling experiments reveal little loss in precision from adding the model extensions but a large loss from using the basic model in the presence of mis-specification. For both equity and exchange rate data, there is overwhelming evidence in favor of models with fat-tailed volatility innovations, and for a leverage effect in the case of equity indices. We also find that volatility estimates from the extended model are markedly different from those produced by the basic SVOL.\",\"PeriodicalId\":325948,\"journal\":{\"name\":\"Chicago Booth RPS: Econometrics & Statistics (Topic)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chicago Booth RPS: Econometrics & Statistics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.275500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chicago Booth RPS: Econometrics & Statistics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.275500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Analysis of a Stochastic Volatility Model with Leverage Effect and Fat Tails
The basic univariate stochastic volatility model specifies that conditional volatility follows a log-normal auto-regressive model with innovations assumed to be independent of the innovations in the conditional mean equation. Since the introduction of practical methods for inference in the basic volatility model (JPR-(1994)), it has been observed that the basic model is too restrictive for many financial series. We extend the basic SVOL to allow for a so-called "Leverage effect" via correlation between the volatility and mean innovations, and for fat-tails in the mean equation innovation. A Bayesian Markov Chain Monte Carlo algorithm is developed for the extended volatility model. Thus far, likelihood-based inference for the correlated SVOL model has not appeared in the literature. We develop Bayes Factors to assess the importance of the leverage and fat-tail extensions. Sampling experiments reveal little loss in precision from adding the model extensions but a large loss from using the basic model in the presence of mis-specification. For both equity and exchange rate data, there is overwhelming evidence in favor of models with fat-tailed volatility innovations, and for a leverage effect in the case of equity indices. We also find that volatility estimates from the extended model are markedly different from those produced by the basic SVOL.