N. Jojic, Thomas S. Huang, B. Brumitt, B. Meyers, Steve Harris
{"title":"密集视差图中指向手势的检测与估计","authors":"N. Jojic, Thomas S. Huang, B. Brumitt, B. Meyers, Steve Harris","doi":"10.1109/AFGR.2000.840676","DOIUrl":null,"url":null,"abstract":"We describe a real-time system for detecting pointing gestures and estimating the direction of pointing using stereo cameras. Previously, similar systems were implemented using color-based blob trackers, which relied on effective skin color detection; this approach is sensitive to lighting changes and the clothing worn by the user. In contrast, we used a stereo system that produces dense disparity maps in real-time. Disparity maps are considerably less sensitive to lighting changes. Our system subtracts the background, analyzes the foreground pixels to break the body into parts using a robust mixture model, and estimates the direction of pointing. We have tested the system on both coarse and fine pointing by selecting the targets in a room and controlling the cursor on a wall screen, respectively.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":"{\"title\":\"Detection and estimation of pointing gestures in dense disparity maps\",\"authors\":\"N. Jojic, Thomas S. Huang, B. Brumitt, B. Meyers, Steve Harris\",\"doi\":\"10.1109/AFGR.2000.840676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a real-time system for detecting pointing gestures and estimating the direction of pointing using stereo cameras. Previously, similar systems were implemented using color-based blob trackers, which relied on effective skin color detection; this approach is sensitive to lighting changes and the clothing worn by the user. In contrast, we used a stereo system that produces dense disparity maps in real-time. Disparity maps are considerably less sensitive to lighting changes. Our system subtracts the background, analyzes the foreground pixels to break the body into parts using a robust mixture model, and estimates the direction of pointing. We have tested the system on both coarse and fine pointing by selecting the targets in a room and controlling the cursor on a wall screen, respectively.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"146\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection and estimation of pointing gestures in dense disparity maps
We describe a real-time system for detecting pointing gestures and estimating the direction of pointing using stereo cameras. Previously, similar systems were implemented using color-based blob trackers, which relied on effective skin color detection; this approach is sensitive to lighting changes and the clothing worn by the user. In contrast, we used a stereo system that produces dense disparity maps in real-time. Disparity maps are considerably less sensitive to lighting changes. Our system subtracts the background, analyzes the foreground pixels to break the body into parts using a robust mixture model, and estimates the direction of pointing. We have tested the system on both coarse and fine pointing by selecting the targets in a room and controlling the cursor on a wall screen, respectively.