{"title":"动态测试集合:在实时网络上测量搜索效果","authors":"I. Soboroff","doi":"10.1145/1148170.1148220","DOIUrl":null,"url":null,"abstract":"Existing methods for measuring the quality of search algorithms use a static collection of documents. A set of queries and a mapping from the queries to the relevant documents allow the experimenter to see how well different search engines or engine configurations retrieve the correct answers. This methodology assumes that the document set and thus the set of relevant documents are unchanging. In this paper, we abandon the static collection requirement. We begin with a recent TREC collection created from a web crawl and analyze how the documents in that collection have changed over time. We determine how decay of the document collection affects TREC systems, and present the results of an experiment using the decayed collection to measure a live web search system. We employ novel measures of search effectiveness that are robust despite incomplete relevance information. Lastly, we propose a methodology of \"collection maintenance\" which supports measuring search performance both for a single system and between systems run at different points in time.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Dynamic test collections: measuring search effectiveness on the live web\",\"authors\":\"I. Soboroff\",\"doi\":\"10.1145/1148170.1148220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing methods for measuring the quality of search algorithms use a static collection of documents. A set of queries and a mapping from the queries to the relevant documents allow the experimenter to see how well different search engines or engine configurations retrieve the correct answers. This methodology assumes that the document set and thus the set of relevant documents are unchanging. In this paper, we abandon the static collection requirement. We begin with a recent TREC collection created from a web crawl and analyze how the documents in that collection have changed over time. We determine how decay of the document collection affects TREC systems, and present the results of an experiment using the decayed collection to measure a live web search system. We employ novel measures of search effectiveness that are robust despite incomplete relevance information. Lastly, we propose a methodology of \\\"collection maintenance\\\" which supports measuring search performance both for a single system and between systems run at different points in time.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

现有的测量搜索算法质量的方法使用文档的静态集合。一组查询和从查询到相关文档的映射允许实验人员查看不同的搜索引擎或引擎配置检索正确答案的效果。该方法假定文档集以及相关文档集不变。在本文中,我们放弃了静态收集需求。我们从最近通过网络抓取创建的TREC集合开始,并分析该集合中的文档是如何随时间变化的。我们确定了文档集合的衰减如何影响TREC系统,并给出了使用衰减集合测量实时web搜索系统的实验结果。我们采用了新颖的搜索有效性度量,尽管不完整的相关信息仍然具有鲁棒性。最后,我们提出了一种“集合维护”方法,该方法支持测量单个系统和在不同时间点运行的系统之间的搜索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic test collections: measuring search effectiveness on the live web
Existing methods for measuring the quality of search algorithms use a static collection of documents. A set of queries and a mapping from the queries to the relevant documents allow the experimenter to see how well different search engines or engine configurations retrieve the correct answers. This methodology assumes that the document set and thus the set of relevant documents are unchanging. In this paper, we abandon the static collection requirement. We begin with a recent TREC collection created from a web crawl and analyze how the documents in that collection have changed over time. We determine how decay of the document collection affects TREC systems, and present the results of an experiment using the decayed collection to measure a live web search system. We employ novel measures of search effectiveness that are robust despite incomplete relevance information. Lastly, we propose a methodology of "collection maintenance" which supports measuring search performance both for a single system and between systems run at different points in time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strict and vague interpretation of XML-retrieval queries AggregateRank: bringing order to web sites Text clustering with extended user feedback Improving personalized web search using result diversification High accuracy retrieval with multiple nested ranker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1