一种新型人机协作:将新颖性搜索与交互进化相结合

Brian G. Woolley, Kenneth O. Stanley
{"title":"一种新型人机协作:将新颖性搜索与交互进化相结合","authors":"Brian G. Woolley, Kenneth O. Stanley","doi":"10.1145/2576768.2598353","DOIUrl":null,"url":null,"abstract":"Recent work on novelty and behavioral diversity in evolutionary computation has highlighted the potential disadvantage of driving search purely through objective means. This paper suggests that leveraging human insight during search can complement such novelty-driven approaches. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with novelty search to facilitate the serendipitous discovery of agent behaviors in a deceptive maze. In this approach, the human user directs evolution by selecting what is interesting from the on-screen population of behaviors. However, unlike in typical IEC, the user can now request that the next generation be filled with novel descendants. The experimental results demonstrate that combining human insight with novelty search not only finds solutions significantly faster and at lower genomic complexities than fully-automated processes guided purely by fitness or novelty, but it also finds solutions faster than the traditional IEC approach. Such results add to the evidence that combining human users and automated processes creates a synergistic effect in the search for solutions.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"A novel human-computer collaboration: combining novelty search with interactive evolution\",\"authors\":\"Brian G. Woolley, Kenneth O. Stanley\",\"doi\":\"10.1145/2576768.2598353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work on novelty and behavioral diversity in evolutionary computation has highlighted the potential disadvantage of driving search purely through objective means. This paper suggests that leveraging human insight during search can complement such novelty-driven approaches. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with novelty search to facilitate the serendipitous discovery of agent behaviors in a deceptive maze. In this approach, the human user directs evolution by selecting what is interesting from the on-screen population of behaviors. However, unlike in typical IEC, the user can now request that the next generation be filled with novel descendants. The experimental results demonstrate that combining human insight with novelty search not only finds solutions significantly faster and at lower genomic complexities than fully-automated processes guided purely by fitness or novelty, but it also finds solutions faster than the traditional IEC approach. Such results add to the evidence that combining human users and automated processes creates a synergistic effect in the search for solutions.\",\"PeriodicalId\":123241,\"journal\":{\"name\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2576768.2598353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

最近关于进化计算中的新颖性和行为多样性的研究突出了纯粹通过客观手段驱动搜索的潜在缺点。本文认为,在搜索过程中利用人类的洞察力可以补充这种新奇驱动的方法。特别是,一种称为新奇辅助交互进化计算(NA-IEC)的新方法将人类直觉与新奇搜索相结合,以促进在欺骗性迷宫中偶然发现代理行为。在这种方法中,人类用户通过从屏幕上的行为群体中选择有趣的行为来指导进化。然而,与典型的IEC不同,用户现在可以要求下一代充满新的后代。实验结果表明,将人类洞察力与新颖性搜索相结合,不仅比纯粹由适应度或新颖性指导的全自动过程更快、更低基因组复杂性地找到解决方案,而且比传统的IEC方法更快地找到解决方案。这样的结果进一步证明,将人类用户和自动化过程结合起来,在寻找解决方案时产生了协同效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel human-computer collaboration: combining novelty search with interactive evolution
Recent work on novelty and behavioral diversity in evolutionary computation has highlighted the potential disadvantage of driving search purely through objective means. This paper suggests that leveraging human insight during search can complement such novelty-driven approaches. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with novelty search to facilitate the serendipitous discovery of agent behaviors in a deceptive maze. In this approach, the human user directs evolution by selecting what is interesting from the on-screen population of behaviors. However, unlike in typical IEC, the user can now request that the next generation be filled with novel descendants. The experimental results demonstrate that combining human insight with novelty search not only finds solutions significantly faster and at lower genomic complexities than fully-automated processes guided purely by fitness or novelty, but it also finds solutions faster than the traditional IEC approach. Such results add to the evidence that combining human users and automated processes creates a synergistic effect in the search for solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-cornered coevolution learning classifier systems for classification tasks Runtime analysis to compare best-improvement and first-improvement in memetic algorithms Clonal selection based fuzzy C-means algorithm for clustering SPSO 2011: analysis of stability; local convergence; and rotation sensitivity GPU-accelerated evolutionary design of the complete exchange communication on wormhole networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1