基于非抽取小波的隐马尔可夫链模型图像边缘检测

Renqi Zhang, Wanli Ouyang, W. Cham
{"title":"基于非抽取小波的隐马尔可夫链模型图像边缘检测","authors":"Renqi Zhang, Wanli Ouyang, W. Cham","doi":"10.1109/FGCNS.2008.20","DOIUrl":null,"url":null,"abstract":"Edge detection plays an important role in digital image processing. Based on the non-decimated wavelet which is shift invariant, in this paper, we develop a new edge detecting technique using hidden Markov chain (HMC) model. With this proposed model (NWHMC), each wavelet coefficient contains a hidden state, herein, we adopt Laplacian model and Gaussian model to represent the information of the state ldquobigrdquo and the state ldquosmall.rdquo The model can be trained by EM algorithm, and then we employ Viterbi algorithm to reveal the hidden state of each coefficient according to MAP estimation. The detecting results of several images are provided to evaluate the algorithm. In addition, the algorithm can be applied to noisy images efficiently.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Image Edge Detection Using Hidden Markov Chain Model Based on the Non-Decimated Wavelet\",\"authors\":\"Renqi Zhang, Wanli Ouyang, W. Cham\",\"doi\":\"10.1109/FGCNS.2008.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge detection plays an important role in digital image processing. Based on the non-decimated wavelet which is shift invariant, in this paper, we develop a new edge detecting technique using hidden Markov chain (HMC) model. With this proposed model (NWHMC), each wavelet coefficient contains a hidden state, herein, we adopt Laplacian model and Gaussian model to represent the information of the state ldquobigrdquo and the state ldquosmall.rdquo The model can be trained by EM algorithm, and then we employ Viterbi algorithm to reveal the hidden state of each coefficient according to MAP estimation. The detecting results of several images are provided to evaluate the algorithm. In addition, the algorithm can be applied to noisy images efficiently.\",\"PeriodicalId\":370780,\"journal\":{\"name\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGCNS.2008.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

边缘检测在数字图像处理中起着重要的作用。基于平移不变的非抽取小波,提出了一种基于隐马尔可夫链(HMC)模型的边缘检测方法。在该模型(NWHMC)中,每个小波系数包含一个隐藏状态,其中,我们采用拉普拉斯模型和高斯模型来表示状态ldquobigrdquo和状态ldquosmall的信息。利用EM算法对模型进行训练,然后利用Viterbi算法根据MAP估计揭示各系数的隐藏状态。最后给出了多幅图像的检测结果来评价该算法。此外,该算法可以有效地应用于噪声图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Edge Detection Using Hidden Markov Chain Model Based on the Non-Decimated Wavelet
Edge detection plays an important role in digital image processing. Based on the non-decimated wavelet which is shift invariant, in this paper, we develop a new edge detecting technique using hidden Markov chain (HMC) model. With this proposed model (NWHMC), each wavelet coefficient contains a hidden state, herein, we adopt Laplacian model and Gaussian model to represent the information of the state ldquobigrdquo and the state ldquosmall.rdquo The model can be trained by EM algorithm, and then we employ Viterbi algorithm to reveal the hidden state of each coefficient according to MAP estimation. The detecting results of several images are provided to evaluate the algorithm. In addition, the algorithm can be applied to noisy images efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Event Recognition for Visual Surveillance Systems Lossless Information Hiding Scheme Based on Neighboring Correlation HSV Color Space and Face Detection Based Objectionable Image Detecting User Interface Concurrency in Web Service Client Systems Visuo-Motor Coordination in Bipedal Humanoid Robot Walking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1