水力裂缝与固井天然裂缝相互作用的实验室成像与相场模拟

M. AlTammar, T. E. Alotaibi, M. Sharma, C. Landis
{"title":"水力裂缝与固井天然裂缝相互作用的实验室成像与相场模拟","authors":"M. AlTammar, T. E. Alotaibi, M. Sharma, C. Landis","doi":"10.2118/198086-ms","DOIUrl":null,"url":null,"abstract":"\n Induced hydraulic fractures in the field interact heavily with pre-existing natural fractures in the rock that are abundant in many formations. Most laboratory fracturing investigations in the literature consider pre-existing fractures as frictional interfaces with zero thickness. However, natural fractures in subsurface formations are often sealed with mineral cementing material of finite thickness. In this study, we present a novel experimental demonstration of the behavior of an induced hydraulic fracture as it approaches a cemented natural fracture utilizing a two-dimensional (2-D) hydraulic fracturing cell.\n Sheet-like test specimens are cast with natural fractures of varied mechanical properties, thickness, and relative position to a fluid injection port. Plaster is used as the specimen matrix. The filling material for hard natural fractures are cast using hydrostone while soft natural fractures are cast using a mixture of plaster and talc. Several tests are performed to characterize the mechanical and flow properties of these materials. A novel method for casting the specimen matrix and filling material of the natural fracture is described and used to enable strong bonding between the natural fracture and specimen matrix. The test specimen is placed between two thick, transparent plates and constant, anisotropic far-field stresses are applied to the specimen. Fracturing fluid is injected in the center of the specimen and the induced fracture trajectories in several experiments are captured with high-resolution digital images.\n We show a clear tendency for the induced hydraulic fracture to cross thick natural fractures filled with materials softer than the host rock and to be diverted by thick natural fractures with harder filling materials. The induced hydraulic fracture also tends to cross hard natural fractures when the natural fractures are relatively thin. In addition, the induced hydraulic fracture from the injection port is shown to be diverted by a thin, hard natural fracture that is placed relatively close to the injection port but crosses the same natural fracture when placed farther away from the injection port. Using our in-house numerical simulator that is based on the phase field approach, we model these laboratory experiments to gain insights into the observed fracture behaviors.\n Our results provide clear evidence of the impact of natural fracture filling material, natural fracture width, and the induced hydraulic fracture length on the outcome of hydraulic fracture interaction with natural fractures. The small-scale, 2-D nature, and well-characterized properties of our laboratory specimens are also valuable for validating numerical hydraulic fracturing simulators that are capable of modeling the effect of pre-existing natural fractures on hydraulic fracture propagation.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laboratory Imaging and Phase Field Modeling of the Interaction of Hydraulic Fractures with Well Cemented Natural Fractures\",\"authors\":\"M. AlTammar, T. E. Alotaibi, M. Sharma, C. Landis\",\"doi\":\"10.2118/198086-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Induced hydraulic fractures in the field interact heavily with pre-existing natural fractures in the rock that are abundant in many formations. Most laboratory fracturing investigations in the literature consider pre-existing fractures as frictional interfaces with zero thickness. However, natural fractures in subsurface formations are often sealed with mineral cementing material of finite thickness. In this study, we present a novel experimental demonstration of the behavior of an induced hydraulic fracture as it approaches a cemented natural fracture utilizing a two-dimensional (2-D) hydraulic fracturing cell.\\n Sheet-like test specimens are cast with natural fractures of varied mechanical properties, thickness, and relative position to a fluid injection port. Plaster is used as the specimen matrix. The filling material for hard natural fractures are cast using hydrostone while soft natural fractures are cast using a mixture of plaster and talc. Several tests are performed to characterize the mechanical and flow properties of these materials. A novel method for casting the specimen matrix and filling material of the natural fracture is described and used to enable strong bonding between the natural fracture and specimen matrix. The test specimen is placed between two thick, transparent plates and constant, anisotropic far-field stresses are applied to the specimen. Fracturing fluid is injected in the center of the specimen and the induced fracture trajectories in several experiments are captured with high-resolution digital images.\\n We show a clear tendency for the induced hydraulic fracture to cross thick natural fractures filled with materials softer than the host rock and to be diverted by thick natural fractures with harder filling materials. The induced hydraulic fracture also tends to cross hard natural fractures when the natural fractures are relatively thin. In addition, the induced hydraulic fracture from the injection port is shown to be diverted by a thin, hard natural fracture that is placed relatively close to the injection port but crosses the same natural fracture when placed farther away from the injection port. Using our in-house numerical simulator that is based on the phase field approach, we model these laboratory experiments to gain insights into the observed fracture behaviors.\\n Our results provide clear evidence of the impact of natural fracture filling material, natural fracture width, and the induced hydraulic fracture length on the outcome of hydraulic fracture interaction with natural fractures. The small-scale, 2-D nature, and well-characterized properties of our laboratory specimens are also valuable for validating numerical hydraulic fracturing simulators that are capable of modeling the effect of pre-existing natural fractures on hydraulic fracture propagation.\",\"PeriodicalId\":282370,\"journal\":{\"name\":\"Day 2 Mon, October 14, 2019\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, October 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/198086-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, October 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198086-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多地层中,诱发的水力裂缝与岩石中已有的天然裂缝相互作用很大。文献中的大多数实验室压裂研究都将预先存在的裂缝视为零厚度的摩擦界面。然而,地下地层中的天然裂缝通常是用有限厚度的矿物胶结材料密封的。在这项研究中,我们利用二维(2d)水力压裂单元展示了诱导水力裂缝接近胶结天然裂缝时的行为。片状试样浇铸具有不同力学性能、厚度和相对于流体注入口的位置的自然裂缝。石膏用作标本基质。硬天然裂缝的充填材料使用水砂岩,而软天然裂缝则使用石膏和滑石粉的混合物。进行了一些试验来表征这些材料的力学和流动特性。本文描述了一种新型的铸造天然断口试样基体和填充材料的方法,并用于使天然断口和试样基体之间的强结合。将试样置于两块厚的透明板之间,并对试样施加恒定的各向异性远场应力。将压裂液注入试样的中心,并通过高分辨率数字图像捕获几个实验中的诱发裂缝轨迹。我们发现,诱导水力裂缝有明显的趋势,即穿过充填材料比宿主岩石更软的厚天然裂缝,并被充填材料更硬的厚天然裂缝转向。当天然裂缝相对较薄时,诱导水力裂缝也倾向于穿过坚硬的天然裂缝。此外,来自注入口的诱导水力裂缝被一条薄而硬的天然裂缝所分流,该天然裂缝位于相对靠近注入口的位置,但在远离注入口的位置穿过同一条天然裂缝。使用基于相场方法的内部数值模拟器,我们对这些实验室实验进行建模,以深入了解观察到的断裂行为。我们的研究结果为天然裂缝填充材料、天然裂缝宽度和诱导水力裂缝长度对水力裂缝与天然裂缝相互作用结果的影响提供了明确的证据。我们实验室样品的小规模、二维性质和良好的特征对于验证数值水力压裂模拟器也很有价值,这些模拟器能够模拟现有天然裂缝对水力裂缝扩展的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laboratory Imaging and Phase Field Modeling of the Interaction of Hydraulic Fractures with Well Cemented Natural Fractures
Induced hydraulic fractures in the field interact heavily with pre-existing natural fractures in the rock that are abundant in many formations. Most laboratory fracturing investigations in the literature consider pre-existing fractures as frictional interfaces with zero thickness. However, natural fractures in subsurface formations are often sealed with mineral cementing material of finite thickness. In this study, we present a novel experimental demonstration of the behavior of an induced hydraulic fracture as it approaches a cemented natural fracture utilizing a two-dimensional (2-D) hydraulic fracturing cell. Sheet-like test specimens are cast with natural fractures of varied mechanical properties, thickness, and relative position to a fluid injection port. Plaster is used as the specimen matrix. The filling material for hard natural fractures are cast using hydrostone while soft natural fractures are cast using a mixture of plaster and talc. Several tests are performed to characterize the mechanical and flow properties of these materials. A novel method for casting the specimen matrix and filling material of the natural fracture is described and used to enable strong bonding between the natural fracture and specimen matrix. The test specimen is placed between two thick, transparent plates and constant, anisotropic far-field stresses are applied to the specimen. Fracturing fluid is injected in the center of the specimen and the induced fracture trajectories in several experiments are captured with high-resolution digital images. We show a clear tendency for the induced hydraulic fracture to cross thick natural fractures filled with materials softer than the host rock and to be diverted by thick natural fractures with harder filling materials. The induced hydraulic fracture also tends to cross hard natural fractures when the natural fractures are relatively thin. In addition, the induced hydraulic fracture from the injection port is shown to be diverted by a thin, hard natural fracture that is placed relatively close to the injection port but crosses the same natural fracture when placed farther away from the injection port. Using our in-house numerical simulator that is based on the phase field approach, we model these laboratory experiments to gain insights into the observed fracture behaviors. Our results provide clear evidence of the impact of natural fracture filling material, natural fracture width, and the induced hydraulic fracture length on the outcome of hydraulic fracture interaction with natural fractures. The small-scale, 2-D nature, and well-characterized properties of our laboratory specimens are also valuable for validating numerical hydraulic fracturing simulators that are capable of modeling the effect of pre-existing natural fractures on hydraulic fracture propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Anatomy of Bypassed Low Resistivity Low Contrast Hydrocarbon Reservoirs: The Arts of Finding Additional Barrels in a Highly Complex Stratigraphic Geological Setting The Synergy of Surfactant and Nanoparticles: Towards Enhancing Foam Stability Characterization of Barriers to Flow in Burgan Reservoirs Using Geological and Dynamic Pressure Data, Burgan Field, Kuwait. Do the Right Thing at Right Time KOC Way of Integrating Process Safety into Process Related Facility Projects Holistic Approach to Estimate Water Breakthrough; A Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1