{"title":"三棱锥尖纳米划痕切削深度和切削力的研究","authors":"Xiliang Tang, Yanling Tian, Weijie Wang, Guanghui Zhao, Dawei Zhang","doi":"10.1109/3M-NANO56083.2022.9941365","DOIUrl":null,"url":null,"abstract":"During a three-sided pyramidal tip based nanoscratching process, the cutting force on the tip varies with the machining direction. When the lateral force on the tip is large, it can lead to lateral deformation of the grooves and limits further fabrication of 2D and 3D microstructures. In order to obtain the machining depth of the grooves when it is not deformed, we analyzed the relationship between the normal load applied to the tip and the scratching depth. The results indicated that the experimental scratching depth matches well with the theoretical when 0° ≤ θ ≤ 20° and 35° ≤ θ ≤ 60°.≤ is the angle between the horizontal projection of the three-sided pyramid edge AD and the direction of scratching. When θ = 0°, the edge AD faces forward during the scratching process Furthermore, the force on the tip was also studied when machining in different directions. According to theoretical analysis and experimental testing, grooves would deform when the force vertical to scratching direction on the tip was greater than 30µN. Finally, we obtained the relationship between the maximum depth and machining direction during nanoscratching process.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Cutting Depth and Forces of the Three-sided Pyramid Tip for Nanoscratching Process\",\"authors\":\"Xiliang Tang, Yanling Tian, Weijie Wang, Guanghui Zhao, Dawei Zhang\",\"doi\":\"10.1109/3M-NANO56083.2022.9941365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During a three-sided pyramidal tip based nanoscratching process, the cutting force on the tip varies with the machining direction. When the lateral force on the tip is large, it can lead to lateral deformation of the grooves and limits further fabrication of 2D and 3D microstructures. In order to obtain the machining depth of the grooves when it is not deformed, we analyzed the relationship between the normal load applied to the tip and the scratching depth. The results indicated that the experimental scratching depth matches well with the theoretical when 0° ≤ θ ≤ 20° and 35° ≤ θ ≤ 60°.≤ is the angle between the horizontal projection of the three-sided pyramid edge AD and the direction of scratching. When θ = 0°, the edge AD faces forward during the scratching process Furthermore, the force on the tip was also studied when machining in different directions. According to theoretical analysis and experimental testing, grooves would deform when the force vertical to scratching direction on the tip was greater than 30µN. Finally, we obtained the relationship between the maximum depth and machining direction during nanoscratching process.\",\"PeriodicalId\":370631,\"journal\":{\"name\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO56083.2022.9941365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Cutting Depth and Forces of the Three-sided Pyramid Tip for Nanoscratching Process
During a three-sided pyramidal tip based nanoscratching process, the cutting force on the tip varies with the machining direction. When the lateral force on the tip is large, it can lead to lateral deformation of the grooves and limits further fabrication of 2D and 3D microstructures. In order to obtain the machining depth of the grooves when it is not deformed, we analyzed the relationship between the normal load applied to the tip and the scratching depth. The results indicated that the experimental scratching depth matches well with the theoretical when 0° ≤ θ ≤ 20° and 35° ≤ θ ≤ 60°.≤ is the angle between the horizontal projection of the three-sided pyramid edge AD and the direction of scratching. When θ = 0°, the edge AD faces forward during the scratching process Furthermore, the force on the tip was also studied when machining in different directions. According to theoretical analysis and experimental testing, grooves would deform when the force vertical to scratching direction on the tip was greater than 30µN. Finally, we obtained the relationship between the maximum depth and machining direction during nanoscratching process.