{"title":"低温极限下若干并行蒙特卡罗方法的分析与优化","authors":"P. Dupuis, Guo-Jhen Wu","doi":"10.1137/21m1402029","DOIUrl":null,"url":null,"abstract":"Metastability is a formidable challenge to Markov chain Monte Carlo methods. In this paper we present methods for algorithm design to meet this challenge. The design problem we consider is temperature selection for the infinite swapping scheme, which is the limit of the widely used parallel tempering scheme obtained when the swap rate tends to infinity. We use a recently developed tool for the analysis of the empirical measure of a small noise diffusion to transform the variance reduction problem into an explicit optimization problem. Our first analysis of the optimization problem is in the setting of a double well model, and it shows that the optimal selection of temperature ratios is a geometric sequence except possibly the highest temperature. In the same setting we identify two different sources of variance reduction, and show how their competition determines the optimal highest temperature. In the general multi-well setting we prove that a pure geometric sequence of temperature ratios is always nearly optimal, with a performance gap that decays geometrically in the number of temperatures.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis and Optimization of Certain Parallel Monte Carlo Methods in the Low Temperature Limit\",\"authors\":\"P. Dupuis, Guo-Jhen Wu\",\"doi\":\"10.1137/21m1402029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metastability is a formidable challenge to Markov chain Monte Carlo methods. In this paper we present methods for algorithm design to meet this challenge. The design problem we consider is temperature selection for the infinite swapping scheme, which is the limit of the widely used parallel tempering scheme obtained when the swap rate tends to infinity. We use a recently developed tool for the analysis of the empirical measure of a small noise diffusion to transform the variance reduction problem into an explicit optimization problem. Our first analysis of the optimization problem is in the setting of a double well model, and it shows that the optimal selection of temperature ratios is a geometric sequence except possibly the highest temperature. In the same setting we identify two different sources of variance reduction, and show how their competition determines the optimal highest temperature. In the general multi-well setting we prove that a pure geometric sequence of temperature ratios is always nearly optimal, with a performance gap that decays geometrically in the number of temperatures.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1402029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1402029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and Optimization of Certain Parallel Monte Carlo Methods in the Low Temperature Limit
Metastability is a formidable challenge to Markov chain Monte Carlo methods. In this paper we present methods for algorithm design to meet this challenge. The design problem we consider is temperature selection for the infinite swapping scheme, which is the limit of the widely used parallel tempering scheme obtained when the swap rate tends to infinity. We use a recently developed tool for the analysis of the empirical measure of a small noise diffusion to transform the variance reduction problem into an explicit optimization problem. Our first analysis of the optimization problem is in the setting of a double well model, and it shows that the optimal selection of temperature ratios is a geometric sequence except possibly the highest temperature. In the same setting we identify two different sources of variance reduction, and show how their competition determines the optimal highest temperature. In the general multi-well setting we prove that a pure geometric sequence of temperature ratios is always nearly optimal, with a performance gap that decays geometrically in the number of temperatures.