基于模糊神经网络算法的自适应后退位置控制系统

H. Kim, K. Park, Seock Joon Kim
{"title":"基于模糊神经网络算法的自适应后退位置控制系统","authors":"H. Kim, K. Park, Seock Joon Kim","doi":"10.1109/DEST.2011.5936620","DOIUrl":null,"url":null,"abstract":"This paper deals with adaptive back-stepping position control system with FNNs(fuzzy neural networks) algorithm for servo system with system uncertainty. The proposed control scheme is induced from the result with the definition of continuative LCF(Lyapunov control functions). In addition, to guarantee the stability problem of the proposed control scheme, the connection weight vector of the FNNs is updated by adaptive rule. The effectiveness of the adaptive back-stepping control system with the FNNs was compared with that of the standard back-stepping control system through computer simulation.","PeriodicalId":297420,"journal":{"name":"5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive back-stepping position control system with fuzzy neural networks algorithm\",\"authors\":\"H. Kim, K. Park, Seock Joon Kim\",\"doi\":\"10.1109/DEST.2011.5936620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with adaptive back-stepping position control system with FNNs(fuzzy neural networks) algorithm for servo system with system uncertainty. The proposed control scheme is induced from the result with the definition of continuative LCF(Lyapunov control functions). In addition, to guarantee the stability problem of the proposed control scheme, the connection weight vector of the FNNs is updated by adaptive rule. The effectiveness of the adaptive back-stepping control system with the FNNs was compared with that of the standard back-stepping control system through computer simulation.\",\"PeriodicalId\":297420,\"journal\":{\"name\":\"5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEST.2011.5936620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEST.2011.5936620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对具有系统不确定性的伺服系统,研究了基于模糊神经网络算法的自适应后退位置控制系统。利用连续李雅普诺夫控制函数(LCF)的定义推导出该控制方案。此外,为了保证所提控制方案的稳定性,采用自适应规则更新fnn的连接权向量。通过计算机仿真,比较了基于fnn的自适应反步控制系统与标准反步控制系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive back-stepping position control system with fuzzy neural networks algorithm
This paper deals with adaptive back-stepping position control system with FNNs(fuzzy neural networks) algorithm for servo system with system uncertainty. The proposed control scheme is induced from the result with the definition of continuative LCF(Lyapunov control functions). In addition, to guarantee the stability problem of the proposed control scheme, the connection weight vector of the FNNs is updated by adaptive rule. The effectiveness of the adaptive back-stepping control system with the FNNs was compared with that of the standard back-stepping control system through computer simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovation adoption forum for industry and public sector Global path planning using improved ant colony optimization algorithm through bilateral cooperative exploration Double burst error correction method: Case of interference incidents during data transmission in wired channels Overview of cognitive visualisation Interval type-2 fuzzy logic controllers for flocking behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1