利用光流反馈的非刚性形状单眼重建

Jiaqing Liu, Xukun Shen, Yong Hu
{"title":"利用光流反馈的非刚性形状单眼重建","authors":"Jiaqing Liu, Xukun Shen, Yong Hu","doi":"10.1109/ICVRV.2017.00014","DOIUrl":null,"url":null,"abstract":"In this paper we describe a variational approach to reconstruct the non-rigid shape from a monocular video sequence based on optical flow feedback. To obtain the dense 2D correspondences from the image sequence, which is critical for 3D reconstruction, we formulate the multi-frame optical flow problem as a global energy minimization process using subspace constraints, settles the problems of large displacements and high cost caused by dimensionality elegantly. Using the long-term trajectory tracked by optical flow field as input, our method estimate the depth of traced pixel in each frame based on the Non-Rigid Structure from Motion(SFM) algorithm. And finally, we refine the 3D shape via interpolation on recovered 3D point cloud and camera parameters. The experiment on real sequence of different objects demonstrates the accuracy and robustness of our framework.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monocular Reconstruction of Non-rigid Shapes Using Optical Flow Feedback\",\"authors\":\"Jiaqing Liu, Xukun Shen, Yong Hu\",\"doi\":\"10.1109/ICVRV.2017.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a variational approach to reconstruct the non-rigid shape from a monocular video sequence based on optical flow feedback. To obtain the dense 2D correspondences from the image sequence, which is critical for 3D reconstruction, we formulate the multi-frame optical flow problem as a global energy minimization process using subspace constraints, settles the problems of large displacements and high cost caused by dimensionality elegantly. Using the long-term trajectory tracked by optical flow field as input, our method estimate the depth of traced pixel in each frame based on the Non-Rigid Structure from Motion(SFM) algorithm. And finally, we refine the 3D shape via interpolation on recovered 3D point cloud and camera parameters. The experiment on real sequence of different objects demonstrates the accuracy and robustness of our framework.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2017.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于光流反馈的变分方法来重建单目视频序列的非刚性形状。为了从图像序列中获得密集的二维对应关系,这是三维重建的关键,我们利用子空间约束将多帧光流问题表述为一个全局能量最小化过程,很好地解决了由维数引起的大位移和高成本问题。该方法以光流场跟踪的长期轨迹为输入,基于运动非刚性结构(non -刚性Structure from Motion, SFM)算法估计每帧跟踪像素的深度。最后,对恢复的三维点云和相机参数进行插值,细化三维形状。在不同目标真实序列上的实验验证了该框架的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monocular Reconstruction of Non-rigid Shapes Using Optical Flow Feedback
In this paper we describe a variational approach to reconstruct the non-rigid shape from a monocular video sequence based on optical flow feedback. To obtain the dense 2D correspondences from the image sequence, which is critical for 3D reconstruction, we formulate the multi-frame optical flow problem as a global energy minimization process using subspace constraints, settles the problems of large displacements and high cost caused by dimensionality elegantly. Using the long-term trajectory tracked by optical flow field as input, our method estimate the depth of traced pixel in each frame based on the Non-Rigid Structure from Motion(SFM) algorithm. And finally, we refine the 3D shape via interpolation on recovered 3D point cloud and camera parameters. The experiment on real sequence of different objects demonstrates the accuracy and robustness of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1