电压依赖性SR K+通道结构的电生理分析。

M Sokabe, M Kasai, K Nomura, K Naruse
{"title":"电压依赖性SR K+通道结构的电生理分析。","authors":"M Sokabe,&nbsp;M Kasai,&nbsp;K Nomura,&nbsp;K Naruse","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a brief review on the electrophysiological analysis of the structural aspects of the voltage-dependent SR (sarcoplasmic reticulum) K+ channel. In the first half, early attempts to determine the physical dimensions of the ion conducting mechanism such as the mouth, narrow tunnel, or ion selective filter of the channel, are reviewed. The depicted cartoon of the SR K+ channel, as an extremely short, busy district with a big mouth on each side, is quite similar to the recently-obtained reconstructed structural image of the acetylcholine receptor channel. In the latter half, we introduce our recent attempts to draw a physical image of the gating mechanism of the SR K+ channel. We examined, for example, the location of the gate and the voltage sensor, and the relationship between them. It is suggested that the gate and the sensor are connected tightly and that the sensor would be exposed to the surface of the lumen side of SR when the gate opens. Finally, the issue of substates in SR K+ channel is discussed. It is implied that the substrate-conductances reflect a partial occlusion of the pore by an intermediate-open gate.</p>","PeriodicalId":10579,"journal":{"name":"Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology","volume":"98 1","pages":"23-30"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophysiological analysis of structural aspects of voltage-dependent SR K+ channel.\",\"authors\":\"M Sokabe,&nbsp;M Kasai,&nbsp;K Nomura,&nbsp;K Naruse\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents a brief review on the electrophysiological analysis of the structural aspects of the voltage-dependent SR (sarcoplasmic reticulum) K+ channel. In the first half, early attempts to determine the physical dimensions of the ion conducting mechanism such as the mouth, narrow tunnel, or ion selective filter of the channel, are reviewed. The depicted cartoon of the SR K+ channel, as an extremely short, busy district with a big mouth on each side, is quite similar to the recently-obtained reconstructed structural image of the acetylcholine receptor channel. In the latter half, we introduce our recent attempts to draw a physical image of the gating mechanism of the SR K+ channel. We examined, for example, the location of the gate and the voltage sensor, and the relationship between them. It is suggested that the gate and the sensor are connected tightly and that the sensor would be exposed to the surface of the lumen side of SR when the gate opens. Finally, the issue of substates in SR K+ channel is discussed. It is implied that the substrate-conductances reflect a partial occlusion of the pore by an intermediate-open gate.</p>\",\"PeriodicalId\":10579,\"journal\":{\"name\":\"Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology\",\"volume\":\"98 1\",\"pages\":\"23-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文就电压依赖性肌浆网K+通道结构方面的电生理分析作一简要综述。在前半部分,早期的尝试,以确定离子传导机制的物理尺寸,如口,窄隧道,或离子选择过滤器的通道,进行了回顾。所描绘的SR K+通道是一个非常短的,繁忙的区域,两侧各有一个大嘴,与最近获得的乙酰胆碱受体通道的重建结构图像非常相似。在后半部分中,我们介绍了我们最近尝试绘制SR K+通道门控机制的物理图像。例如,我们检查了栅极和电压传感器的位置,以及它们之间的关系。建议栅极和传感器连接紧密,当栅极打开时,传感器将暴露在SR的流明侧表面。最后,讨论了SR K+通道的子态问题。这表明,衬底电导反映了孔被中间打开的栅极部分遮挡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrophysiological analysis of structural aspects of voltage-dependent SR K+ channel.

This article presents a brief review on the electrophysiological analysis of the structural aspects of the voltage-dependent SR (sarcoplasmic reticulum) K+ channel. In the first half, early attempts to determine the physical dimensions of the ion conducting mechanism such as the mouth, narrow tunnel, or ion selective filter of the channel, are reviewed. The depicted cartoon of the SR K+ channel, as an extremely short, busy district with a big mouth on each side, is quite similar to the recently-obtained reconstructed structural image of the acetylcholine receptor channel. In the latter half, we introduce our recent attempts to draw a physical image of the gating mechanism of the SR K+ channel. We examined, for example, the location of the gate and the voltage sensor, and the relationship between them. It is suggested that the gate and the sensor are connected tightly and that the sensor would be exposed to the surface of the lumen side of SR when the gate opens. Finally, the issue of substates in SR K+ channel is discussed. It is implied that the substrate-conductances reflect a partial occlusion of the pore by an intermediate-open gate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of superoxide dismutase in a kindling model of epilepsy. Oxidative stress as a modulating factor of pulmonary tumorigenesis in mice; comparative study on two different strains. Ligand binding characteristics of [3H] dihydroalprenolol in cerebral cortical membranes of young and old senescence-accelerated mouse. Effects of opioid receptors antagonists administration to suprachiasmatic nucleus on hibernation of ground squirrels Citellus dauricus. Oral administration of peptides derived from bonito bowels decreases blood pressure in spontaneously hypertensive rats by inhibiting angiotensin converting enzyme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1