一个增强的系统,以识别Facebook应用程序上的恶作剧社交恶意软件

G. Ramkumar, S. Vigneshwari, S. Roodyn
{"title":"一个增强的系统,以识别Facebook应用程序上的恶作剧社交恶意软件","authors":"G. Ramkumar, S. Vigneshwari, S. Roodyn","doi":"10.1109/ICCPCT.2016.7530271","DOIUrl":null,"url":null,"abstract":"Hackers try to induce malicious content on Facebook. The user is unknown about the characteristic of malicious apps which differ expressively from friendly apps with respect to numerous features. Weka tool is a collection of machine learning algorithms for data mining tasks which are used to detect and classify the malicious app on Facebook. App-nets are large groups of securely connected applications which are improved using the widely used algorithms. K-means clustering is one such algorithm which is implemented in Weka tool. Security is a major issue for retrieving the clustered data. There is a need to reduce the risk of hackers on Facebook Application. To develop secured business applications Frappe, is used. Frappe is a web information gathering framework to observe the posting behaviour of Facebook app users. Using Frappe for detecting malicious apps and Weka tool for efficient classification, an efficient framework is developed in the proposed system to identify the mischievous Facebook applications.","PeriodicalId":431894,"journal":{"name":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An enhanced system to identify mischievous social malwares on Facebook applications\",\"authors\":\"G. Ramkumar, S. Vigneshwari, S. Roodyn\",\"doi\":\"10.1109/ICCPCT.2016.7530271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hackers try to induce malicious content on Facebook. The user is unknown about the characteristic of malicious apps which differ expressively from friendly apps with respect to numerous features. Weka tool is a collection of machine learning algorithms for data mining tasks which are used to detect and classify the malicious app on Facebook. App-nets are large groups of securely connected applications which are improved using the widely used algorithms. K-means clustering is one such algorithm which is implemented in Weka tool. Security is a major issue for retrieving the clustered data. There is a need to reduce the risk of hackers on Facebook Application. To develop secured business applications Frappe, is used. Frappe is a web information gathering framework to observe the posting behaviour of Facebook app users. Using Frappe for detecting malicious apps and Weka tool for efficient classification, an efficient framework is developed in the proposed system to identify the mischievous Facebook applications.\",\"PeriodicalId\":431894,\"journal\":{\"name\":\"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPCT.2016.7530271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2016.7530271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

黑客试图在Facebook上引入恶意内容。用户不知道恶意应用程序的特征,恶意应用程序在许多功能上与友好应用程序表现出不同。Weka工具是用于数据挖掘任务的机器学习算法集合,用于检测和分类Facebook上的恶意应用程序。App-nets是一大批安全连接的应用程序,这些应用程序使用广泛使用的算法进行改进。K-means聚类就是这样一种算法,它是在Weka工具中实现的。安全性是检索集群数据的主要问题。有必要减少黑客对Facebook应用程序的风险。为了开发安全的业务应用程序,使用了Frappe。Frappe是一个网络信息收集框架,用于观察Facebook应用程序用户的发帖行为。利用Frappe检测恶意应用,Weka工具进行高效分类,开发了一个高效的框架来识别Facebook恶意应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An enhanced system to identify mischievous social malwares on Facebook applications
Hackers try to induce malicious content on Facebook. The user is unknown about the characteristic of malicious apps which differ expressively from friendly apps with respect to numerous features. Weka tool is a collection of machine learning algorithms for data mining tasks which are used to detect and classify the malicious app on Facebook. App-nets are large groups of securely connected applications which are improved using the widely used algorithms. K-means clustering is one such algorithm which is implemented in Weka tool. Security is a major issue for retrieving the clustered data. There is a need to reduce the risk of hackers on Facebook Application. To develop secured business applications Frappe, is used. Frappe is a web information gathering framework to observe the posting behaviour of Facebook app users. Using Frappe for detecting malicious apps and Weka tool for efficient classification, an efficient framework is developed in the proposed system to identify the mischievous Facebook applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on the increasing in the performance of a solar photovoltaic cell during shading condition Design and analysis of hybrid DC-DC boost converter in continuous conduction mode Optimal control of islanded microgrid with adaptive fuzzy logic & PI controller using HBCC under various voltage & load variation Mouse behaviour based multi-factor authentication using neural networks A novel approach to maximize network life time by reducing power consumption level using CGNT model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1