基于幂归一化倒谱系数的鲁棒语言识别

A. Dutta, K. S. Rao
{"title":"基于幂归一化倒谱系数的鲁棒语言识别","authors":"A. Dutta, K. S. Rao","doi":"10.1109/IC3.2015.7346688","DOIUrl":null,"url":null,"abstract":"The present work investigates the robustness of Power Normalized Cepstral Coefficients (PNCC) for Language identification (LID) from noisy speech. Though the state of the art vocal tract features like mel frequency cepstral coefficients (MFCC) give good recognition accuracy in clean environments, the performance degrades drastically when the signal to noise ratio decreases. In this work, experiments have been carried out on IITKGP-MLILSC speech database. Gaussian mixture model (GMM) is used to building the language models. We have used NOISEX-92 database to add synthetic noise at different SNR levels. We have also compared the recognition accuracy of two systems, one developed using MFCCs and and the other using PNCCs. Finally, we have shown that PNCC features are more robust to noise.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust language identification using Power Normalized Cepstral Coefficients\",\"authors\":\"A. Dutta, K. S. Rao\",\"doi\":\"10.1109/IC3.2015.7346688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work investigates the robustness of Power Normalized Cepstral Coefficients (PNCC) for Language identification (LID) from noisy speech. Though the state of the art vocal tract features like mel frequency cepstral coefficients (MFCC) give good recognition accuracy in clean environments, the performance degrades drastically when the signal to noise ratio decreases. In this work, experiments have been carried out on IITKGP-MLILSC speech database. Gaussian mixture model (GMM) is used to building the language models. We have used NOISEX-92 database to add synthetic noise at different SNR levels. We have also compared the recognition accuracy of two systems, one developed using MFCCs and and the other using PNCCs. Finally, we have shown that PNCC features are more robust to noise.\",\"PeriodicalId\":217950,\"journal\":{\"name\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2015.7346688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了功率归一化倒谱系数(PNCC)在语言识别(LID)中的鲁棒性。虽然最先进的声道特征,如mel频率倒谱系数(MFCC)在清洁环境下具有良好的识别精度,但当信噪比降低时,性能会急剧下降。本文在IITKGP-MLILSC语音数据库上进行了实验。采用高斯混合模型(GMM)建立语言模型。我们使用NOISEX-92数据库添加不同信噪比水平的合成噪声。我们还比较了两种系统的识别精度,一种是使用mfc开发的,另一种是使用pnc开发的。最后,我们证明了PNCC特征对噪声具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust language identification using Power Normalized Cepstral Coefficients
The present work investigates the robustness of Power Normalized Cepstral Coefficients (PNCC) for Language identification (LID) from noisy speech. Though the state of the art vocal tract features like mel frequency cepstral coefficients (MFCC) give good recognition accuracy in clean environments, the performance degrades drastically when the signal to noise ratio decreases. In this work, experiments have been carried out on IITKGP-MLILSC speech database. Gaussian mixture model (GMM) is used to building the language models. We have used NOISEX-92 database to add synthetic noise at different SNR levels. We have also compared the recognition accuracy of two systems, one developed using MFCCs and and the other using PNCCs. Finally, we have shown that PNCC features are more robust to noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing security technique on generic database Pruned feature space for metamorphic malware detection using Markov Blanket Mitigation of desynchronization attack during inter-eNodeB handover key management in LTE Task behaviour inputs to a heterogeneous multiprocessor scheduler Hand written digit recognition system for South Indian languages using artificial neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1