人机协作的动态控制

Kazuhiro Kosuge, H. Yoshida, Toshio Fukuda
{"title":"人机协作的动态控制","authors":"Kazuhiro Kosuge, H. Yoshida, Toshio Fukuda","doi":"10.1109/ROMAN.1993.367685","DOIUrl":null,"url":null,"abstract":"This paper proposes a new robotic system, which consists of multiple robots and executes a task in cooperation with humans. The authors consider a task in which the robots and humans manipulate an object in coordination. The authors assume that no interactions occur among robots and humans, that is, robots and humans have interactions with each other only through the object. The authors also assume that the humans are manipulating the object around a point fixed to the object. Under these assumptions, the authors design a controller for each robot around the point so that the object has a prescribed passive dynamics around the point. The stability of the resultant system is assured based on Popov's hyper stability theorem under the assumption that the passivity conditions for the humans are satisfied. The resultant control algorithm is applied to an experimental system, which consists of two industrial manipulators and a human. The results illustrate the proposed control algorithm.<<ETX>>","PeriodicalId":270591,"journal":{"name":"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Dynamic control for robot-human collaboration\",\"authors\":\"Kazuhiro Kosuge, H. Yoshida, Toshio Fukuda\",\"doi\":\"10.1109/ROMAN.1993.367685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new robotic system, which consists of multiple robots and executes a task in cooperation with humans. The authors consider a task in which the robots and humans manipulate an object in coordination. The authors assume that no interactions occur among robots and humans, that is, robots and humans have interactions with each other only through the object. The authors also assume that the humans are manipulating the object around a point fixed to the object. Under these assumptions, the authors design a controller for each robot around the point so that the object has a prescribed passive dynamics around the point. The stability of the resultant system is assured based on Popov's hyper stability theorem under the assumption that the passivity conditions for the humans are satisfied. The resultant control algorithm is applied to an experimental system, which consists of two industrial manipulators and a human. The results illustrate the proposed control algorithm.<<ETX>>\",\"PeriodicalId\":270591,\"journal\":{\"name\":\"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMAN.1993.367685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.1993.367685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

本文提出了一种新的机器人系统,该系统由多个机器人组成,并与人类合作执行任务。作者考虑了一个机器人和人类协调操作一个物体的任务。作者假设机器人与人之间不发生交互,即机器人与人之间仅通过对象进行交互。作者还假设人类正在围绕物体的一个固定点操纵物体。在这些假设下,作者为每个机器人设计了一个围绕点的控制器,使物体具有规定的围绕点的被动动力学。在人的无源性条件满足的前提下,利用波波夫超稳定性定理,保证了系统的稳定性。将所得到的控制算法应用于由两个工业机械手和一个人组成的实验系统。实验结果验证了所提出的控制算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic control for robot-human collaboration
This paper proposes a new robotic system, which consists of multiple robots and executes a task in cooperation with humans. The authors consider a task in which the robots and humans manipulate an object in coordination. The authors assume that no interactions occur among robots and humans, that is, robots and humans have interactions with each other only through the object. The authors also assume that the humans are manipulating the object around a point fixed to the object. Under these assumptions, the authors design a controller for each robot around the point so that the object has a prescribed passive dynamics around the point. The stability of the resultant system is assured based on Popov's hyper stability theorem under the assumption that the passivity conditions for the humans are satisfied. The resultant control algorithm is applied to an experimental system, which consists of two industrial manipulators and a human. The results illustrate the proposed control algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An acoustic abnormal detection system Assembly instruction manual understanding by fusing natural language understanding and technical illustration understanding Augmented audio reality: telepresence/VR hybrid acoustic environments Recognition of band-pass filtered facial images: a comparison between perceptual and memory processes On the concept of Hyper Hospital, a medical care system distributedly constructed on the electronic information network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1