基于模糊扩展卡尔曼滤波的感应电机转速和磁链估计方法

Zhonggang Yin, Lu Xiao, Xiangdong Sun, Jing Liu, Y. Zhong
{"title":"基于模糊扩展卡尔曼滤波的感应电机转速和磁链估计方法","authors":"Zhonggang Yin, Lu Xiao, Xiangdong Sun, Jing Liu, Y. Zhong","doi":"10.1109/PEAC.2014.7037941","DOIUrl":null,"url":null,"abstract":"A speed and flux estimation method of induction motors using fuzzy extended kalman filter(FEKF) is proposed in this paper, which is used to make lower impact of time varied statistic of measurement noise. It reaches a better speed estimation accuracy of induction motors than the extended kalman filter(EKF). The proposed algorithm modifies the measurement noise covariance of extended kalman filter recursively by monitoring if the ratio between filter's innovation and actual innovation is near 1, and chooses a fuzzy factor to make its noise model close to real noise model adaptively. The speed estimated error and the flux fluctuation of FEKF under gross external disturbance and unknown measurement noises are compared with EKF. Simulation and experimental results show that FEKF provides better performance and faster convergence than EKF under gross external error and unknown measurement noises.","PeriodicalId":309780,"journal":{"name":"2014 International Power Electronics and Application Conference and Exposition","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A speed and flux estimation method of induction motor using fuzzy extended kalman filter\",\"authors\":\"Zhonggang Yin, Lu Xiao, Xiangdong Sun, Jing Liu, Y. Zhong\",\"doi\":\"10.1109/PEAC.2014.7037941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A speed and flux estimation method of induction motors using fuzzy extended kalman filter(FEKF) is proposed in this paper, which is used to make lower impact of time varied statistic of measurement noise. It reaches a better speed estimation accuracy of induction motors than the extended kalman filter(EKF). The proposed algorithm modifies the measurement noise covariance of extended kalman filter recursively by monitoring if the ratio between filter's innovation and actual innovation is near 1, and chooses a fuzzy factor to make its noise model close to real noise model adaptively. The speed estimated error and the flux fluctuation of FEKF under gross external disturbance and unknown measurement noises are compared with EKF. Simulation and experimental results show that FEKF provides better performance and faster convergence than EKF under gross external error and unknown measurement noises.\",\"PeriodicalId\":309780,\"journal\":{\"name\":\"2014 International Power Electronics and Application Conference and Exposition\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Power Electronics and Application Conference and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEAC.2014.7037941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Power Electronics and Application Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEAC.2014.7037941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种利用模糊扩展卡尔曼滤波(FEKF)估计异步电动机转速和磁链的方法,该方法可以减小测量噪声时变统计量的影响。与扩展卡尔曼滤波(EKF)相比,该方法具有更好的异步电动机速度估计精度。该算法通过监测扩展卡尔曼滤波器的创新值与实际创新值之比是否接近于1,递归地修正扩展卡尔曼滤波器的测量噪声协方差,并自适应地选择一个模糊因子使其噪声模型接近于实际噪声模型。比较了FEKF在严重外部干扰和未知测量噪声下的速度估计误差和磁通波动。仿真和实验结果表明,在粗糙外部误差和未知测量噪声下,FEKF比EKF具有更好的性能和更快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A speed and flux estimation method of induction motor using fuzzy extended kalman filter
A speed and flux estimation method of induction motors using fuzzy extended kalman filter(FEKF) is proposed in this paper, which is used to make lower impact of time varied statistic of measurement noise. It reaches a better speed estimation accuracy of induction motors than the extended kalman filter(EKF). The proposed algorithm modifies the measurement noise covariance of extended kalman filter recursively by monitoring if the ratio between filter's innovation and actual innovation is near 1, and chooses a fuzzy factor to make its noise model close to real noise model adaptively. The speed estimated error and the flux fluctuation of FEKF under gross external disturbance and unknown measurement noises are compared with EKF. Simulation and experimental results show that FEKF provides better performance and faster convergence than EKF under gross external error and unknown measurement noises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harmonic stability assessment for multi-paralleled, grid-connected inverters An up-to-date review of large marine tidal current turbine technologies Optimal control for a self-reacting point absorber: A one-body equivalent model approach Comparison of direct-drive PM generators for tidal turbines Ocean wave energy extraction: Up-to-date technologies review and evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1