{"title":"一种用于可穿戴心电图电磁干扰评估的两步方法","authors":"Wei Liao, Jingjing Shi, Jianqing Wang","doi":"10.1109/APEMC.2015.7175355","DOIUrl":null,"url":null,"abstract":"In this study, we propose a two-step approach to evaluate electromagnetic interference (EMI) with a wearable electrocardiogram (ECG) sensor. The two-step approach combines a quasi-static electromagnetic (EM) field analysis and an electric circuit analysis, and is applied to the EMI analysis at frequencies below 1 MHz for our developed wearable ECG to demonstrate its usefulness. The quasi-static EM field analysis gives the common mode voltage coupled from the incident EM field at the ECG sensing electrodes, and the electric circuit analysis quantifies a differential mode voltage at the differential amplifier output of the ECG detection circuit. The differential mode voltage has been shown to come from a conversion from the common mode voltage due to an unbalance between the contact impedances of the two sensing electrodes. It may achieve nearly 0.6 V at the differential amplifier output under 10-V/m plane-wave incident electric field, and completely mask the ECG signal. It is essential to reduce the unbalance as much as possible to not cause a significant interference voltage in the amplified ECG signal.","PeriodicalId":325138,"journal":{"name":"2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A two-step approach for EMI evaluation of a wearable ECG\",\"authors\":\"Wei Liao, Jingjing Shi, Jianqing Wang\",\"doi\":\"10.1109/APEMC.2015.7175355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a two-step approach to evaluate electromagnetic interference (EMI) with a wearable electrocardiogram (ECG) sensor. The two-step approach combines a quasi-static electromagnetic (EM) field analysis and an electric circuit analysis, and is applied to the EMI analysis at frequencies below 1 MHz for our developed wearable ECG to demonstrate its usefulness. The quasi-static EM field analysis gives the common mode voltage coupled from the incident EM field at the ECG sensing electrodes, and the electric circuit analysis quantifies a differential mode voltage at the differential amplifier output of the ECG detection circuit. The differential mode voltage has been shown to come from a conversion from the common mode voltage due to an unbalance between the contact impedances of the two sensing electrodes. It may achieve nearly 0.6 V at the differential amplifier output under 10-V/m plane-wave incident electric field, and completely mask the ECG signal. It is essential to reduce the unbalance as much as possible to not cause a significant interference voltage in the amplified ECG signal.\",\"PeriodicalId\":325138,\"journal\":{\"name\":\"2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEMC.2015.7175355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEMC.2015.7175355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A two-step approach for EMI evaluation of a wearable ECG
In this study, we propose a two-step approach to evaluate electromagnetic interference (EMI) with a wearable electrocardiogram (ECG) sensor. The two-step approach combines a quasi-static electromagnetic (EM) field analysis and an electric circuit analysis, and is applied to the EMI analysis at frequencies below 1 MHz for our developed wearable ECG to demonstrate its usefulness. The quasi-static EM field analysis gives the common mode voltage coupled from the incident EM field at the ECG sensing electrodes, and the electric circuit analysis quantifies a differential mode voltage at the differential amplifier output of the ECG detection circuit. The differential mode voltage has been shown to come from a conversion from the common mode voltage due to an unbalance between the contact impedances of the two sensing electrodes. It may achieve nearly 0.6 V at the differential amplifier output under 10-V/m plane-wave incident electric field, and completely mask the ECG signal. It is essential to reduce the unbalance as much as possible to not cause a significant interference voltage in the amplified ECG signal.