先见树后见林[自然物体探测]

Daniel C. Asmar, J. Zelek, Samer M. Abdallah
{"title":"先见树后见林[自然物体探测]","authors":"Daniel C. Asmar, J. Zelek, Samer M. Abdallah","doi":"10.1109/CRV.2005.71","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an algorithm that detects and locates natural objects in an outdoor environment using local descriptors. Interest points inside images are detected with a difference of Gaussian (DoG) filter and are then represented using scale invariant local descriptors. Our algorithm learns objects in a weakly supervised manner by clustering similar descriptors together and using those clusters as object classifiers. The intent is to identify stable objects to be used as landmarks for simultaneous localization and mapping (SLAM) of robots. The robot milieu is first identified using a fast environment recognition algorithm and then landmarks are suggested for SLAM that are appropriate for that environment. In our experiments we test our theory on the detection of trees that belong to the plantae pinophyta (pine family). Initial results show that out of 200 test images, our classification yields 85 correct positives, 15 false negatives, 73 correct negatives and 27 false positives.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Seeing the trees before the forest [natural object detection]\",\"authors\":\"Daniel C. Asmar, J. Zelek, Samer M. Abdallah\",\"doi\":\"10.1109/CRV.2005.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an algorithm that detects and locates natural objects in an outdoor environment using local descriptors. Interest points inside images are detected with a difference of Gaussian (DoG) filter and are then represented using scale invariant local descriptors. Our algorithm learns objects in a weakly supervised manner by clustering similar descriptors together and using those clusters as object classifiers. The intent is to identify stable objects to be used as landmarks for simultaneous localization and mapping (SLAM) of robots. The robot milieu is first identified using a fast environment recognition algorithm and then landmarks are suggested for SLAM that are appropriate for that environment. In our experiments we test our theory on the detection of trees that belong to the plantae pinophyta (pine family). Initial results show that out of 200 test images, our classification yields 85 correct positives, 15 false negatives, 73 correct negatives and 27 false positives.\",\"PeriodicalId\":307318,\"journal\":{\"name\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2005.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了一种利用局部描述符检测和定位室外环境中自然物体的算法。用高斯差分(DoG)滤波检测图像内部的兴趣点,然后用尺度不变局部描述符表示。我们的算法通过将相似的描述符聚在一起并使用这些聚类作为对象分类器,以弱监督的方式学习对象。目的是识别稳定的物体,作为机器人同步定位和绘图(SLAM)的地标。首先使用快速环境识别算法识别机器人环境,然后为SLAM建议适合该环境的地标。在我们的实验中,我们测试了我们的理论对属于植物pinophyta(松科)的树木的检测。初步结果表明,在200个测试图像中,我们的分类产生85个正确阳性,15个假阴性,73个正确阴性和27个假阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seeing the trees before the forest [natural object detection]
In this paper, we propose an algorithm that detects and locates natural objects in an outdoor environment using local descriptors. Interest points inside images are detected with a difference of Gaussian (DoG) filter and are then represented using scale invariant local descriptors. Our algorithm learns objects in a weakly supervised manner by clustering similar descriptors together and using those clusters as object classifiers. The intent is to identify stable objects to be used as landmarks for simultaneous localization and mapping (SLAM) of robots. The robot milieu is first identified using a fast environment recognition algorithm and then landmarks are suggested for SLAM that are appropriate for that environment. In our experiments we test our theory on the detection of trees that belong to the plantae pinophyta (pine family). Initial results show that out of 200 test images, our classification yields 85 correct positives, 15 false negatives, 73 correct negatives and 27 false positives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Head pose estimation of partially occluded faces Minimum Bayes error features for visual recognition by sequential feature selection and extraction Using vanishing points to correct camera rotation in images Dry granular flows need special tools Body tracking in human walk from monocular video sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1