基于混合学习和基于hevc的光场编码

Milan Stepanov, G. Valenzise, F. Dufaux
{"title":"基于混合学习和基于hevc的光场编码","authors":"Milan Stepanov, G. Valenzise, F. Dufaux","doi":"10.1109/ICIP40778.2020.9190971","DOIUrl":null,"url":null,"abstract":"Light fields have additional storage requirements compared to conventional image and video signals, and demand therefore an efficient representation. In order to improve coding efficiency, in this work we propose a hybrid coding scheme which combines a learning-based compression approach with a traditional video coding scheme. Their integration offers great gains at low/mid bitrates thanks to the efficient representation of the learning-based approach and is competitive at high bitrates compared to standard tools thanks to the encoding of the residual signal. The proposed approach achieves on average 38% and 31% BD rate saving compared to HEVC and JPEG Pleno transform-based codec, respectively.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Learning-Based And Hevc-Based Coding Of Light Fields\",\"authors\":\"Milan Stepanov, G. Valenzise, F. Dufaux\",\"doi\":\"10.1109/ICIP40778.2020.9190971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light fields have additional storage requirements compared to conventional image and video signals, and demand therefore an efficient representation. In order to improve coding efficiency, in this work we propose a hybrid coding scheme which combines a learning-based compression approach with a traditional video coding scheme. Their integration offers great gains at low/mid bitrates thanks to the efficient representation of the learning-based approach and is competitive at high bitrates compared to standard tools thanks to the encoding of the residual signal. The proposed approach achieves on average 38% and 31% BD rate saving compared to HEVC and JPEG Pleno transform-based codec, respectively.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9190971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统的图像和视频信号相比,光场具有额外的存储要求,因此需要有效的表示。为了提高编码效率,本文提出了一种将基于学习的压缩方法与传统视频编码方法相结合的混合编码方案。由于基于学习的方法的有效表示,它们的集成在低/中比特率下提供了巨大的收益,并且由于剩余信号的编码,与标准工具相比,在高比特率下具有竞争力。与基于HEVC和JPEG Pleno变换的编解码器相比,该方法分别平均节省38%和31%的BD速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Learning-Based And Hevc-Based Coding Of Light Fields
Light fields have additional storage requirements compared to conventional image and video signals, and demand therefore an efficient representation. In order to improve coding efficiency, in this work we propose a hybrid coding scheme which combines a learning-based compression approach with a traditional video coding scheme. Their integration offers great gains at low/mid bitrates thanks to the efficient representation of the learning-based approach and is competitive at high bitrates compared to standard tools thanks to the encoding of the residual signal. The proposed approach achieves on average 38% and 31% BD rate saving compared to HEVC and JPEG Pleno transform-based codec, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1