IT事件管理中机器学习算法的性能

Mohammad Agus Prihandono, R. Harwahyu, R. F. Sari
{"title":"IT事件管理中机器学习算法的性能","authors":"Mohammad Agus Prihandono, R. Harwahyu, R. F. Sari","doi":"10.1109/iCAST51195.2020.9319487","DOIUrl":null,"url":null,"abstract":"Incident Management is a part of managing IT services, improving services, and achieving organizational goals. IT incidents can be learned and predicted future incidents. This research compares the factors that cause incidents using initial machine learning techniques such as Random Forest, SVM, Multilayer perceptron, and the latest machine learning techniques such as RNN, LSTM, GRU, to predict IT incidents. Grid search is used to find the optimal parameter combination. 5-fold and 10-fold Cross-validation evaluates the model's optimal performance by dividing the dataset into training data and test data. The results show that the highest accuracy of 98.866% is produced by LSTM machine learning techniques at 5-fold and 10-fold cross-validation. SVM has the lowest accuracy of 97.837% made at 5-fold and 10-fold cross-validation.","PeriodicalId":212570,"journal":{"name":"2020 11th International Conference on Awareness Science and Technology (iCAST)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance of Machine Learning Algorithms for IT Incident Management\",\"authors\":\"Mohammad Agus Prihandono, R. Harwahyu, R. F. Sari\",\"doi\":\"10.1109/iCAST51195.2020.9319487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incident Management is a part of managing IT services, improving services, and achieving organizational goals. IT incidents can be learned and predicted future incidents. This research compares the factors that cause incidents using initial machine learning techniques such as Random Forest, SVM, Multilayer perceptron, and the latest machine learning techniques such as RNN, LSTM, GRU, to predict IT incidents. Grid search is used to find the optimal parameter combination. 5-fold and 10-fold Cross-validation evaluates the model's optimal performance by dividing the dataset into training data and test data. The results show that the highest accuracy of 98.866% is produced by LSTM machine learning techniques at 5-fold and 10-fold cross-validation. SVM has the lowest accuracy of 97.837% made at 5-fold and 10-fold cross-validation.\",\"PeriodicalId\":212570,\"journal\":{\"name\":\"2020 11th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCAST51195.2020.9319487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCAST51195.2020.9319487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

事件管理是管理IT服务、改进服务和实现组织目标的一部分。IT事件可以学习和预测未来的事件。本研究使用随机森林、支持向量机、多层感知器等初始机器学习技术和RNN、LSTM、GRU等最新机器学习技术来预测IT事件,比较了导致事件的因素。采用网格搜索来寻找最优的参数组合。5-fold和10-fold交叉验证通过将数据集分为训练数据和测试数据来评估模型的最佳性能。结果表明,LSTM机器学习技术在5倍和10倍交叉验证下产生的准确率最高,达到98.866%。SVM在5次和10次交叉验证时准确率最低,为97.837%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of Machine Learning Algorithms for IT Incident Management
Incident Management is a part of managing IT services, improving services, and achieving organizational goals. IT incidents can be learned and predicted future incidents. This research compares the factors that cause incidents using initial machine learning techniques such as Random Forest, SVM, Multilayer perceptron, and the latest machine learning techniques such as RNN, LSTM, GRU, to predict IT incidents. Grid search is used to find the optimal parameter combination. 5-fold and 10-fold Cross-validation evaluates the model's optimal performance by dividing the dataset into training data and test data. The results show that the highest accuracy of 98.866% is produced by LSTM machine learning techniques at 5-fold and 10-fold cross-validation. SVM has the lowest accuracy of 97.837% made at 5-fold and 10-fold cross-validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skeleton Guided Conflict-Free Hand Gesture Recognition for Robot Control Improved Spiking Neural Networks with multiple neurons for digit recognition A Lightweight Transformer with Convolutional Attention Social Media Mining with Dynamic Clustering: A Case Study by COVID-19 Tweets A Visual-SLAM based Line Laser Scanning System using Semantically Segmented Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1