救援环境下的自主导航和探索

D. Calisi, A. Farinelli, L. Iocchi, D. Nardi
{"title":"救援环境下的自主导航和探索","authors":"D. Calisi, A. Farinelli, L. Iocchi, D. Nardi","doi":"10.1109/SSRR.2005.1501268","DOIUrl":null,"url":null,"abstract":"We present an approach Io autonomous exploration of a rescue environment. Exploration is based on unexplored frontiers and navigation on a two-level approach to the robot motion problem. Our method makes use of a motion planner capable of negotiating with very fine representations of the environment, that is used to move in a cluttered scenario. A topological path-planner \"guides\" the lower level and reduces the search space. The two algorithms are derived from two widely-used probabilistic algorithms, currently successfully deployed in many robot applications, the probabilistic roadmap and the rapid-exploring random trees. However, their adaptation to the rescue scenario requires significant extensions.","PeriodicalId":173715,"journal":{"name":"IEEE International Safety, Security and Rescue Rototics, Workshop, 2005.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Autonomous navigation and exploration in a rescue environment\",\"authors\":\"D. Calisi, A. Farinelli, L. Iocchi, D. Nardi\",\"doi\":\"10.1109/SSRR.2005.1501268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach Io autonomous exploration of a rescue environment. Exploration is based on unexplored frontiers and navigation on a two-level approach to the robot motion problem. Our method makes use of a motion planner capable of negotiating with very fine representations of the environment, that is used to move in a cluttered scenario. A topological path-planner \\\"guides\\\" the lower level and reduces the search space. The two algorithms are derived from two widely-used probabilistic algorithms, currently successfully deployed in many robot applications, the probabilistic roadmap and the rapid-exploring random trees. However, their adaptation to the rescue scenario requires significant extensions.\",\"PeriodicalId\":173715,\"journal\":{\"name\":\"IEEE International Safety, Security and Rescue Rototics, Workshop, 2005.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Safety, Security and Rescue Rototics, Workshop, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR.2005.1501268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Safety, Security and Rescue Rototics, Workshop, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2005.1501268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

我们提出了一种自主探索救援环境的方法。探索是基于未探索的边界和导航的两级方法来解决机器人运动问题。我们的方法使用了一个运动规划器,它能够处理非常精细的环境表示,用于在混乱的场景中移动。拓扑路径规划器“引导”较低的层次并减少搜索空间。这两种算法来源于两种广泛使用的概率算法,即概率路线图和快速探索随机树,目前已成功应用于许多机器人应用中。然而,它们对救援方案的适应需要大量扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous navigation and exploration in a rescue environment
We present an approach Io autonomous exploration of a rescue environment. Exploration is based on unexplored frontiers and navigation on a two-level approach to the robot motion problem. Our method makes use of a motion planner capable of negotiating with very fine representations of the environment, that is used to move in a cluttered scenario. A topological path-planner "guides" the lower level and reduces the search space. The two algorithms are derived from two widely-used probabilistic algorithms, currently successfully deployed in many robot applications, the probabilistic roadmap and the rapid-exploring random trees. However, their adaptation to the rescue scenario requires significant extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urban flood simulation as a component of integrated earthquake disaster simulation Sequential sensing with biosonar for natural landmark classification Parking-vehicles recognition using spatial temporal data (a study of mobile robot surveillance system using spatial temporal GIS part 2) Experimental study of traction robot system for rescue against nuclear disaster Tele-presence methods supporting cooperation of robots and humans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1