基于改进残差网络的不同导联心电分类集成学习

Federico M. Muscato, V. Corino, L. Mainardi
{"title":"基于改进残差网络的不同导联心电分类集成学习","authors":"Federico M. Muscato, V. Corino, L. Mainardi","doi":"10.23919/cinc53138.2021.9662779","DOIUrl":null,"url":null,"abstract":"The automatic detection and classification of cardiac abnormalities can assist physicians in making diagnoses, saving costs in modern healthcare systems. In this study we present an automatic algorithm for classification of cardiac abnormalities included in the CinC's challenge 2021 dataset consisting of twelve-lead, six-lead, three-lead, and two-lead ECGs (team: Polimi_1). For each set of leads an ensemble of three deep learning models, trained on three different subsets, was developed. These subsets, obtained by splitting the recordings with the most frequent classes, had more balanced distributions for training and were used to train the 3 classifiers. The trained models were modified Residual Networks with a Squeeze-and-Excitation module. This module is based on the intuition of channel attention: the basic idea of this approach is to apply a weight to the Convolutional channels based on their relevance in learning before propagating to the next layer. For evaluation, we submitted our model to the official phase of the PhysioNet/Computing in Cardiology Challenge 2021. The model received scores of 0.47, 0.46, 0.45, 0.48 and 0.45 (ranked 14th, 13th, 15th, 10th, and 13th out of 39 teams) on 12-lead, 6-lead, 4-lead, 3-lead, 2-lead hidden test set, respectively; placing us in the 11th position for the mean of the 12-lead, 3-lead, and 2-lead scores.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ensemble Learning of Modified Residual Networks for Classifying ECG with Different Set of Leads\",\"authors\":\"Federico M. Muscato, V. Corino, L. Mainardi\",\"doi\":\"10.23919/cinc53138.2021.9662779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic detection and classification of cardiac abnormalities can assist physicians in making diagnoses, saving costs in modern healthcare systems. In this study we present an automatic algorithm for classification of cardiac abnormalities included in the CinC's challenge 2021 dataset consisting of twelve-lead, six-lead, three-lead, and two-lead ECGs (team: Polimi_1). For each set of leads an ensemble of three deep learning models, trained on three different subsets, was developed. These subsets, obtained by splitting the recordings with the most frequent classes, had more balanced distributions for training and were used to train the 3 classifiers. The trained models were modified Residual Networks with a Squeeze-and-Excitation module. This module is based on the intuition of channel attention: the basic idea of this approach is to apply a weight to the Convolutional channels based on their relevance in learning before propagating to the next layer. For evaluation, we submitted our model to the official phase of the PhysioNet/Computing in Cardiology Challenge 2021. The model received scores of 0.47, 0.46, 0.45, 0.48 and 0.45 (ranked 14th, 13th, 15th, 10th, and 13th out of 39 teams) on 12-lead, 6-lead, 4-lead, 3-lead, 2-lead hidden test set, respectively; placing us in the 11th position for the mean of the 12-lead, 3-lead, and 2-lead scores.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

心脏异常的自动检测和分类可以帮助医生做出诊断,节省现代医疗保健系统的成本。在这项研究中,我们提出了一种用于心脏异常分类的自动算法,该算法包含在CinC的挑战2021数据集中,该数据集由12导联、6导联、3导联和2导联心电图组成(团队:Polimi_1)。对于每组线索,开发了三个深度学习模型的集合,在三个不同的子集上进行训练。这些子集是通过将记录与最频繁的类分开得到的,具有更平衡的训练分布,并用于训练3个分类器。训练后的模型是带有挤压-激励模块的改进残差网络。该模块基于通道注意的直觉:该方法的基本思想是在传播到下一层之前,根据卷积通道在学习中的相关性对其应用权重。为了进行评估,我们将我们的模型提交给了PhysioNet/Computing in Cardiology Challenge 2021的官方阶段。模型在12-lead、6-lead、4-lead、3-lead、2-lead隐藏测试集上的得分分别为0.47、0.46、0.45、0.48、0.45(在39支队伍中排名第14、13、15、10、13);这让我们在12分,3分和2分的平均得分中排名第11位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble Learning of Modified Residual Networks for Classifying ECG with Different Set of Leads
The automatic detection and classification of cardiac abnormalities can assist physicians in making diagnoses, saving costs in modern healthcare systems. In this study we present an automatic algorithm for classification of cardiac abnormalities included in the CinC's challenge 2021 dataset consisting of twelve-lead, six-lead, three-lead, and two-lead ECGs (team: Polimi_1). For each set of leads an ensemble of three deep learning models, trained on three different subsets, was developed. These subsets, obtained by splitting the recordings with the most frequent classes, had more balanced distributions for training and were used to train the 3 classifiers. The trained models were modified Residual Networks with a Squeeze-and-Excitation module. This module is based on the intuition of channel attention: the basic idea of this approach is to apply a weight to the Convolutional channels based on their relevance in learning before propagating to the next layer. For evaluation, we submitted our model to the official phase of the PhysioNet/Computing in Cardiology Challenge 2021. The model received scores of 0.47, 0.46, 0.45, 0.48 and 0.45 (ranked 14th, 13th, 15th, 10th, and 13th out of 39 teams) on 12-lead, 6-lead, 4-lead, 3-lead, 2-lead hidden test set, respectively; placing us in the 11th position for the mean of the 12-lead, 3-lead, and 2-lead scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1