Lontara梵文图像边缘检测算子的性能比较

Yolanda Gabyriela Ferandji, Diaraya, A. Lawi
{"title":"Lontara梵文图像边缘检测算子的性能比较","authors":"Yolanda Gabyriela Ferandji, Diaraya, A. Lawi","doi":"10.1109/EIConCIT.2018.8878673","DOIUrl":null,"url":null,"abstract":"Processing of image digital is a technology that can be used to enhance images and information about objects in images. Edge detection in digital image enhancement is a process that produces parts of image objects for segmentation and creativity of objects in the image. This research aims to get the best operators to detect the character of the word Lontara in Sanskrit manuscripts. This research also uses morphological operations in binary images to identify the many forms of the character of the word Lontara. Edge detection operators used are Sobel, Canny, Prewitt, and Roberts. There are 2 types of images used in this study are good quality images and poor-quality images. The parameter used to measure operator performance is Mean Square Error (MSE). The results we obtained from Roberts operator are the best operators to detect the location of the script with an MSE value of 0.8370 in images of good quality, MSE value of 0.8688 in images of poor quality.","PeriodicalId":424909,"journal":{"name":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison of Image Edge Detection Operators for Lontara Sanskrit Scripts\",\"authors\":\"Yolanda Gabyriela Ferandji, Diaraya, A. Lawi\",\"doi\":\"10.1109/EIConCIT.2018.8878673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing of image digital is a technology that can be used to enhance images and information about objects in images. Edge detection in digital image enhancement is a process that produces parts of image objects for segmentation and creativity of objects in the image. This research aims to get the best operators to detect the character of the word Lontara in Sanskrit manuscripts. This research also uses morphological operations in binary images to identify the many forms of the character of the word Lontara. Edge detection operators used are Sobel, Canny, Prewitt, and Roberts. There are 2 types of images used in this study are good quality images and poor-quality images. The parameter used to measure operator performance is Mean Square Error (MSE). The results we obtained from Roberts operator are the best operators to detect the location of the script with an MSE value of 0.8370 in images of good quality, MSE value of 0.8688 in images of poor quality.\",\"PeriodicalId\":424909,\"journal\":{\"name\":\"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIConCIT.2018.8878673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConCIT.2018.8878673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字图像处理是一种可以用来增强图像和图像中物体信息的技术。数字图像增强中的边缘检测是产生图像对象的部分,用于分割和创造图像中对象的过程。本研究旨在找到最好的操作者来检测梵文手稿中Lontara一词的特征。本研究还利用二值图像的形态运算来识别“Lontara”字的多种形式。使用的边缘检测算子有Sobel、Canny、Prewitt和Roberts。本研究中使用的图像有两种类型:高质量图像和低质量图像。用来衡量操作员性能的参数是均方误差(MSE)。Roberts算子的结果是检测脚本位置的最佳算子,在质量较好的图像中MSE值为0.8370,在质量较差的图像中MSE值为0.8688。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Comparison of Image Edge Detection Operators for Lontara Sanskrit Scripts
Processing of image digital is a technology that can be used to enhance images and information about objects in images. Edge detection in digital image enhancement is a process that produces parts of image objects for segmentation and creativity of objects in the image. This research aims to get the best operators to detect the character of the word Lontara in Sanskrit manuscripts. This research also uses morphological operations in binary images to identify the many forms of the character of the word Lontara. Edge detection operators used are Sobel, Canny, Prewitt, and Roberts. There are 2 types of images used in this study are good quality images and poor-quality images. The parameter used to measure operator performance is Mean Square Error (MSE). The results we obtained from Roberts operator are the best operators to detect the location of the script with an MSE value of 0.8370 in images of good quality, MSE value of 0.8688 in images of poor quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study on Zoning, Histogram, and Structural Methods to Classify Sundanese Characters from Handwriting Medicine Stock Forecasting Using Least Square Method Sentiment Analysis of Product Reviews using Naive Bayes Algorithm: A Case Study [EIConCIT 2018 Cover Page] Keynote Speech 3 Internet of Things (IoT) Technology For Star Fruit Plantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1