{"title":"基于结构分析的永磁同步电动机匝间短路和退磁故障检测与判别","authors":"S. Ebrahimi, M. Choux, Van Khang Huynh","doi":"10.1109/ICIT46573.2021.9453557","DOIUrl":null,"url":null,"abstract":"This paper presents a fault diagnosis method based on structural analysis of permanent magnet synchronous motors (PMSMs), focusing on detecting and discriminating two of the most common faults in PMSMs, namely demagnetization and inter-turn short circuit faults. The structural analysis technique uses the dynamic mathematical model of the PMSM in matrix form to evaluate the system’s structural model. After obtaining the analytical redundancy using the over-determined part of the system, it is divided into redundant testable sub-models. Four structured residuals are designed to detect and isolate the investigated faults, which are applied to the system in different time intervals. Finally, the proposed diagnostic approach is numerically verified through a simulation of an inverter-fed PMSM and white Gaussian noise are added to the measured signals from the motor to verify its diagnosis performances.","PeriodicalId":193338,"journal":{"name":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection and Discrimination of Inter-Turn Short Circuit and Demagnetization Faults in PMSMs Based on Structural Analysis\",\"authors\":\"S. Ebrahimi, M. Choux, Van Khang Huynh\",\"doi\":\"10.1109/ICIT46573.2021.9453557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fault diagnosis method based on structural analysis of permanent magnet synchronous motors (PMSMs), focusing on detecting and discriminating two of the most common faults in PMSMs, namely demagnetization and inter-turn short circuit faults. The structural analysis technique uses the dynamic mathematical model of the PMSM in matrix form to evaluate the system’s structural model. After obtaining the analytical redundancy using the over-determined part of the system, it is divided into redundant testable sub-models. Four structured residuals are designed to detect and isolate the investigated faults, which are applied to the system in different time intervals. Finally, the proposed diagnostic approach is numerically verified through a simulation of an inverter-fed PMSM and white Gaussian noise are added to the measured signals from the motor to verify its diagnosis performances.\",\"PeriodicalId\":193338,\"journal\":{\"name\":\"2021 22nd IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT46573.2021.9453557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT46573.2021.9453557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection and Discrimination of Inter-Turn Short Circuit and Demagnetization Faults in PMSMs Based on Structural Analysis
This paper presents a fault diagnosis method based on structural analysis of permanent magnet synchronous motors (PMSMs), focusing on detecting and discriminating two of the most common faults in PMSMs, namely demagnetization and inter-turn short circuit faults. The structural analysis technique uses the dynamic mathematical model of the PMSM in matrix form to evaluate the system’s structural model. After obtaining the analytical redundancy using the over-determined part of the system, it is divided into redundant testable sub-models. Four structured residuals are designed to detect and isolate the investigated faults, which are applied to the system in different time intervals. Finally, the proposed diagnostic approach is numerically verified through a simulation of an inverter-fed PMSM and white Gaussian noise are added to the measured signals from the motor to verify its diagnosis performances.