基于最新甘蔗数据库的甘蔗叶面病害分类的迁移学习方法

Swapnil D. Daphal, S. Koli
{"title":"基于最新甘蔗数据库的甘蔗叶面病害分类的迁移学习方法","authors":"Swapnil D. Daphal, S. Koli","doi":"10.1109/iccica52458.2021.9697312","DOIUrl":null,"url":null,"abstract":"In recent years, plant disease detection and classification systems have helped in better farming practices. With the advent of artificial intelligence, agriculture automation has seen innovative methods to mitigate risk and losses in farming. In this paper use of deep learning for sugarcane, disease classification is analyzed. Around 1470 images with 5 categories have thoroughly experimented. Transfer learning methods like VGG-16 net and ResNet are compared for an identical set of input parameters. The results obtained show with the limited set of datasets, transfer learning schemes can provide good results. VGG-16 Net and ResNet have shown accuracy around 83.00 % & 91.00 %, respectively.","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Transfer Learning approach to Sugarcane Foliar disease Classification with state-of-the-art Sugarcane Database\",\"authors\":\"Swapnil D. Daphal, S. Koli\",\"doi\":\"10.1109/iccica52458.2021.9697312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, plant disease detection and classification systems have helped in better farming practices. With the advent of artificial intelligence, agriculture automation has seen innovative methods to mitigate risk and losses in farming. In this paper use of deep learning for sugarcane, disease classification is analyzed. Around 1470 images with 5 categories have thoroughly experimented. Transfer learning methods like VGG-16 net and ResNet are compared for an identical set of input parameters. The results obtained show with the limited set of datasets, transfer learning schemes can provide good results. VGG-16 Net and ResNet have shown accuracy around 83.00 % & 91.00 %, respectively.\",\"PeriodicalId\":327193,\"journal\":{\"name\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccica52458.2021.9697312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,植物病害检测和分类系统有助于改善耕作方式。随着人工智能的出现,农业自动化出现了降低农业风险和损失的创新方法。本文利用深度学习对甘蔗病害分类进行了分析。大约有1470张图片,分为5个类别进行了彻底的实验。对于相同的输入参数集,比较了vgg - 16net和ResNet等迁移学习方法。结果表明,在有限的数据集条件下,迁移学习方案可以提供良好的学习效果。VGG-16 Net和ResNet的准确率分别在83.00 %和91.00 %左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning approach to Sugarcane Foliar disease Classification with state-of-the-art Sugarcane Database
In recent years, plant disease detection and classification systems have helped in better farming practices. With the advent of artificial intelligence, agriculture automation has seen innovative methods to mitigate risk and losses in farming. In this paper use of deep learning for sugarcane, disease classification is analyzed. Around 1470 images with 5 categories have thoroughly experimented. Transfer learning methods like VGG-16 net and ResNet are compared for an identical set of input parameters. The results obtained show with the limited set of datasets, transfer learning schemes can provide good results. VGG-16 Net and ResNet have shown accuracy around 83.00 % & 91.00 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Body Sensors for Implementation of Human Activity Recognition Performance Prediction of Product/Person Using Real Time Twitter Tweets Survey on Centric Data Protection Method for Cloud Storage Application Twitter Sentiment Analysis using Natural Language Processing Crime Visualization using A Novel GIS-Based Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1