基于资源感知vmi的云恶意软件分析体系结构

SHCIS '17 Pub Date : 2017-06-19 DOI:10.1145/3099012.3099015
Benjamin Taubmann, Bojan Kolosnjaji
{"title":"基于资源感知vmi的云恶意软件分析体系结构","authors":"Benjamin Taubmann, Bojan Kolosnjaji","doi":"10.1145/3099012.3099015","DOIUrl":null,"url":null,"abstract":"Virtual machine introspection (VMI) is a technology with many possible applications, such as malware analysis and intrusion detection. However, this technique is resource intensive, as inspecting program behavior includes recording of a high number of events caused by the analyzed binary and related processes. In this paper we present an architecture that leverages cloud resources for virtual machine-based malware analysis in order to train a classifier for detecting cloud-specific malware. This architecture is designed while having in mind the resource consumption when applying the VMI-based technology in production systems, in particular the overhead of tracing a large set of system calls. In order to minimize the data acquisition overhead, we use a data-driven approach from the area of resource-aware machine learning. This approach enables us to optimize the trade-off between malware detection performance and the overhead of our VMI-based tracing system.","PeriodicalId":269698,"journal":{"name":"SHCIS '17","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Architecture for Resource-Aware VMI-based Cloud Malware Analysis\",\"authors\":\"Benjamin Taubmann, Bojan Kolosnjaji\",\"doi\":\"10.1145/3099012.3099015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual machine introspection (VMI) is a technology with many possible applications, such as malware analysis and intrusion detection. However, this technique is resource intensive, as inspecting program behavior includes recording of a high number of events caused by the analyzed binary and related processes. In this paper we present an architecture that leverages cloud resources for virtual machine-based malware analysis in order to train a classifier for detecting cloud-specific malware. This architecture is designed while having in mind the resource consumption when applying the VMI-based technology in production systems, in particular the overhead of tracing a large set of system calls. In order to minimize the data acquisition overhead, we use a data-driven approach from the area of resource-aware machine learning. This approach enables us to optimize the trade-off between malware detection performance and the overhead of our VMI-based tracing system.\",\"PeriodicalId\":269698,\"journal\":{\"name\":\"SHCIS '17\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHCIS '17\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3099012.3099015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHCIS '17","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3099012.3099015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

虚拟机自省(VMI)是一种具有许多可能应用的技术,例如恶意软件分析和入侵检测。然而,这种技术是资源密集型的,因为检查程序行为包括记录由分析的二进制文件和相关进程引起的大量事件。在本文中,我们提出了一种利用云资源进行基于虚拟机的恶意软件分析的架构,以训练分类器来检测特定于云的恶意软件。在设计此体系结构时,考虑到在生产系统中应用基于vmi的技术时的资源消耗,特别是跟踪大量系统调用的开销。为了最大限度地减少数据采集开销,我们使用了资源感知机器学习领域的数据驱动方法。这种方法使我们能够优化恶意软件检测性能和基于vmi的跟踪系统开销之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Architecture for Resource-Aware VMI-based Cloud Malware Analysis
Virtual machine introspection (VMI) is a technology with many possible applications, such as malware analysis and intrusion detection. However, this technique is resource intensive, as inspecting program behavior includes recording of a high number of events caused by the analyzed binary and related processes. In this paper we present an architecture that leverages cloud resources for virtual machine-based malware analysis in order to train a classifier for detecting cloud-specific malware. This architecture is designed while having in mind the resource consumption when applying the VMI-based technology in production systems, in particular the overhead of tracing a large set of system calls. In order to minimize the data acquisition overhead, we use a data-driven approach from the area of resource-aware machine learning. This approach enables us to optimize the trade-off between malware detection performance and the overhead of our VMI-based tracing system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a Generic Architecture for Interactive Cost-Aware Visualization of Monitoring Data in Distributed Systems Protecting JavaScript Apps from Code Analysis Virtual Machine Introspection Based SSH Honeypot Towards a Multi-objective Optimization Model to Support Information Security Investment Decision-making Architecture for Resource-Aware VMI-based Cloud Malware Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1