使用半监督学习的ASIC STA路径验证

James Obert, T. Mannos
{"title":"使用半监督学习的ASIC STA路径验证","authors":"James Obert, T. Mannos","doi":"10.1142/S1793351X19400105","DOIUrl":null,"url":null,"abstract":"To counter manufacturing irregularities and ensure ASIC design integrity, it is essential that robust design verification methods are employed. It is possible to ensure such integrity using ASIC static timing analysis (STA) and machine learning. In this research, uniquely devised machine and statistical learning methods which quantify anomalous variations in Register Transfer Level (RTL) or Graphic Design System II (GDSII) format are discussed. To measure the variations in ASIC analysis data, the timing delays in relation to path electrical characteristics are explored. It is shown that semi-supervised learning techniques are powerful tools in characterizing variations within STA path data and have much potential for identifying anomalies in ASIC RTL and GDSII design data.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASIC STA Path Verification Using Semi-Supervised Learning\",\"authors\":\"James Obert, T. Mannos\",\"doi\":\"10.1142/S1793351X19400105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To counter manufacturing irregularities and ensure ASIC design integrity, it is essential that robust design verification methods are employed. It is possible to ensure such integrity using ASIC static timing analysis (STA) and machine learning. In this research, uniquely devised machine and statistical learning methods which quantify anomalous variations in Register Transfer Level (RTL) or Graphic Design System II (GDSII) format are discussed. To measure the variations in ASIC analysis data, the timing delays in relation to path electrical characteristics are explored. It is shown that semi-supervised learning techniques are powerful tools in characterizing variations within STA path data and have much potential for identifying anomalies in ASIC RTL and GDSII design data.\",\"PeriodicalId\":217956,\"journal\":{\"name\":\"Int. J. Semantic Comput.\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Semantic Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793351X19400105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793351X19400105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了应对制造违规行为并确保ASIC设计的完整性,必须采用稳健的设计验证方法。使用ASIC静态时序分析(STA)和机器学习可以确保这种完整性。在本研究中,讨论了独特设计的机器和统计学习方法,这些方法量化了寄存器传输级别(RTL)或图形设计系统II (GDSII)格式的异常变化。为了测量ASIC分析数据的变化,探讨了与路径电特性相关的时序延迟。研究表明,半监督学习技术是表征STA路径数据变化的强大工具,在识别ASIC RTL和GDSII设计数据中的异常方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ASIC STA Path Verification Using Semi-Supervised Learning
To counter manufacturing irregularities and ensure ASIC design integrity, it is essential that robust design verification methods are employed. It is possible to ensure such integrity using ASIC static timing analysis (STA) and machine learning. In this research, uniquely devised machine and statistical learning methods which quantify anomalous variations in Register Transfer Level (RTL) or Graphic Design System II (GDSII) format are discussed. To measure the variations in ASIC analysis data, the timing delays in relation to path electrical characteristics are explored. It is shown that semi-supervised learning techniques are powerful tools in characterizing variations within STA path data and have much potential for identifying anomalies in ASIC RTL and GDSII design data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editorial - Special Issue on IEEE AIKE 2022 TemporalDedup: Domain-Independent Deduplication of Redundant and Errant Temporal Data Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis Knowledge Graph-Based Integration of Autonomous Driving Datasets Confidence-Based Cheat Detection Through Constrained Order Inference of Temporal Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1