基于维基百科分类网络概念向量的模糊领域本体挖掘

Cheng-Yu Lu, Shou-Wei Ho, Jen-Ming Chung, Fu-Yuan Hsu, Hahn-Ming Lee, Jan-Ming Ho
{"title":"基于维基百科分类网络概念向量的模糊领域本体挖掘","authors":"Cheng-Yu Lu, Shou-Wei Ho, Jen-Ming Chung, Fu-Yuan Hsu, Hahn-Ming Lee, Jan-Ming Ho","doi":"10.1109/WI-IAT.2011.140","DOIUrl":null,"url":null,"abstract":"Ontology is essential in the formalization of domain knowledge for effective human-computer interactions (i.e., expert-finding). Many researchers have proposed approaches to measure the similarity between concepts by accessing fuzzy domain ontology. However, engineering of the construction of domain ontologies turns out to be labor intensive and tedious. In this paper, we propose an approach to mine domain concepts from Wikipedia Category Network, and to generate the fuzzy relation based on a concept vector extraction method to measure the relatedness between a single term and a concept. Our methodology can conceptualize domain knowledge by mining Wikipedia Category Network. An empirical experiment is conducted to evaluate the robustness by using TREC dataset. Experiment results show the constructed fuzzy domain ontology derived by proposed approach can discover robust fuzzy domain ontology with satisfactory accuracy in information retrieval tasks.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Mining Fuzzy Domain Ontology Based on Concept Vector from Wikipedia Category Network\",\"authors\":\"Cheng-Yu Lu, Shou-Wei Ho, Jen-Ming Chung, Fu-Yuan Hsu, Hahn-Ming Lee, Jan-Ming Ho\",\"doi\":\"10.1109/WI-IAT.2011.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology is essential in the formalization of domain knowledge for effective human-computer interactions (i.e., expert-finding). Many researchers have proposed approaches to measure the similarity between concepts by accessing fuzzy domain ontology. However, engineering of the construction of domain ontologies turns out to be labor intensive and tedious. In this paper, we propose an approach to mine domain concepts from Wikipedia Category Network, and to generate the fuzzy relation based on a concept vector extraction method to measure the relatedness between a single term and a concept. Our methodology can conceptualize domain knowledge by mining Wikipedia Category Network. An empirical experiment is conducted to evaluate the robustness by using TREC dataset. Experiment results show the constructed fuzzy domain ontology derived by proposed approach can discover robust fuzzy domain ontology with satisfactory accuracy in information retrieval tasks.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本体对于有效的人机交互(即专家查找)领域知识的形式化是必不可少的。许多研究者提出了通过访问模糊领域本体来度量概念间相似性的方法。然而,领域本体的构建工程是一项劳动密集型和繁琐的工作。本文提出了一种从维基百科分类网络中挖掘领域概念的方法,并基于概念向量提取方法生成模糊关系,以度量单个术语与概念之间的相关性。我们的方法可以通过挖掘维基百科分类网络来概念化领域知识。利用TREC数据集对模型的鲁棒性进行了实证检验。实验结果表明,该方法构建的模糊领域本体能够在信息检索任务中以满意的准确率发现鲁棒的模糊领域本体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining Fuzzy Domain Ontology Based on Concept Vector from Wikipedia Category Network
Ontology is essential in the formalization of domain knowledge for effective human-computer interactions (i.e., expert-finding). Many researchers have proposed approaches to measure the similarity between concepts by accessing fuzzy domain ontology. However, engineering of the construction of domain ontologies turns out to be labor intensive and tedious. In this paper, we propose an approach to mine domain concepts from Wikipedia Category Network, and to generate the fuzzy relation based on a concept vector extraction method to measure the relatedness between a single term and a concept. Our methodology can conceptualize domain knowledge by mining Wikipedia Category Network. An empirical experiment is conducted to evaluate the robustness by using TREC dataset. Experiment results show the constructed fuzzy domain ontology derived by proposed approach can discover robust fuzzy domain ontology with satisfactory accuracy in information retrieval tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slovak Blog Clustering Enhanced by Mining the Web Comments Automatic Face Annotation in News Images by Mining the Web Exploiting Additional Dimensions as Virtual Items on Top-N Recommender Systems Supporting Agent Systems in the Programming Language A Software Agent Framework for Exploiting Demand-Side Consumer Social Networks in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1