在聚合系统层面预测太阳能光伏发电

Yue Zhang, M. Beaudin, H. Zareipour, D. Wood
{"title":"在聚合系统层面预测太阳能光伏发电","authors":"Yue Zhang, M. Beaudin, H. Zareipour, D. Wood","doi":"10.1109/NAPS.2014.6965389","DOIUrl":null,"url":null,"abstract":"Solar Photovoltaic power production has grown significantly over the past few years. California ISO is the first system operator in North America to make the data for aggregated system-level solar power production across its territory available on a regular basis. In this paper, we demonstrate the application of three well-established forecasting models to 24-hour-ahead prediction of solar power at the system level. The models investigated in this paper include Auto Regressive Integrated Moving Average (ARIMA), Radial Basis Function Neural Network (RBFNN), and Least Squares Support Vector Machine (LS-SVM). Numerical results and discussions are provided based on California ISO solar power data.","PeriodicalId":421766,"journal":{"name":"2014 North American Power Symposium (NAPS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Forecasting Solar Photovoltaic power production at the aggregated system level\",\"authors\":\"Yue Zhang, M. Beaudin, H. Zareipour, D. Wood\",\"doi\":\"10.1109/NAPS.2014.6965389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar Photovoltaic power production has grown significantly over the past few years. California ISO is the first system operator in North America to make the data for aggregated system-level solar power production across its territory available on a regular basis. In this paper, we demonstrate the application of three well-established forecasting models to 24-hour-ahead prediction of solar power at the system level. The models investigated in this paper include Auto Regressive Integrated Moving Average (ARIMA), Radial Basis Function Neural Network (RBFNN), and Least Squares Support Vector Machine (LS-SVM). Numerical results and discussions are provided based on California ISO solar power data.\",\"PeriodicalId\":421766,\"journal\":{\"name\":\"2014 North American Power Symposium (NAPS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2014.6965389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2014.6965389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

太阳能光伏发电在过去几年中有了显著的增长。加州ISO是北美第一个定期提供其区域内系统级太阳能发电总量数据的系统运营商。在本文中,我们展示了三种成熟的预测模型在系统级太阳能发电24小时前预测中的应用。本文研究的模型包括自回归综合移动平均(ARIMA)、径向基函数神经网络(RBFNN)和最小二乘支持向量机(LS-SVM)。给出了基于加州ISO太阳能数据的数值结果和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting Solar Photovoltaic power production at the aggregated system level
Solar Photovoltaic power production has grown significantly over the past few years. California ISO is the first system operator in North America to make the data for aggregated system-level solar power production across its territory available on a regular basis. In this paper, we demonstrate the application of three well-established forecasting models to 24-hour-ahead prediction of solar power at the system level. The models investigated in this paper include Auto Regressive Integrated Moving Average (ARIMA), Radial Basis Function Neural Network (RBFNN), and Least Squares Support Vector Machine (LS-SVM). Numerical results and discussions are provided based on California ISO solar power data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Addressing cyber security for the oil, gas and energy sector Investigation of voltage stability in three-phase unbalanced distribution systems with DG using modal analysis technique Dynamic Remedial Action Scheme using online transient stability analysis Implementing a real-time cyber-physical system test bed in RTDS and OPNET Size reduction of permanent magnet generators for wind turbines with higher energy density permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1