建立现代泥炭类似物,从历史泥炭中解读红树林亚栖息地

Samuel H. Neely, A. Raymond
{"title":"建立现代泥炭类似物,从历史泥炭中解读红树林亚栖息地","authors":"Samuel H. Neely, A. Raymond","doi":"10.58782/flmnh.wyms3450","DOIUrl":null,"url":null,"abstract":"In mangroves of South Florida, plant debris accumulates and humifies to form peat. The structure and composition of mangrove peat differs among mangal sub-habitats, leading to categorically distinct peat types reflective of the taphonomically active zone (TAZ). Here, taphonomic processes degrade and shape the peat until it is sequestered in the depth of final burial (DFB). Sequestered peats provide historical archives of the mangal depositional environment and the palaeoecological context of peat formation that are used to reconstruct mangal sub-habitats. However, as peat passes through the TAZ, information about the precursor mangal sub-habitat is reduced, which may skew mangrove community reconstructions. To better understand the influence of the TAZ on peat formation, we analyzed plant organ- and taxon-based measures by characterizing surficial mangrove peats from two contrasting mangal sub-habitats in Barnes Sound, Florida: a tidally influenced, Rhizophora-dominated fringe sub-habitat; and an inundated, interior mixed forest basin sub-habitat. We found (1) peats formed in basin sites have greater amounts of leaf litter, which correlates with reduced tidal activity and restricted detritivore access to the litter layer; (2) peats formed in fringe sites have higher root percentages, or root–shoot ratios, which provide a reliable method to differentiate between peats at depth, and (3) mangal sub-habitats differ in preserved organismal signals, such as foraminifera and insect parts. Further, we compare our surficial core samples to historical, deep core samples from other South Florida mangrove peat deposits to establish modern peat analogs needed to decipher preserved mangrove peats. These comparisons suggest that few aerial plant organs survive the TAZ and sequestered peats are biased towards root-rich peats characteristic of fringe sub-habitats; however, sequestered peats with lower root-shoot ratios indicate leaf litter-rich peats formed in basin sub-habitats.","PeriodicalId":106523,"journal":{"name":"Bulletin of the Florida Museum of Natural History","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing Modern Peat Analogs to Decipher Mangal Sub-Habitats From Historical Peats\",\"authors\":\"Samuel H. Neely, A. Raymond\",\"doi\":\"10.58782/flmnh.wyms3450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mangroves of South Florida, plant debris accumulates and humifies to form peat. The structure and composition of mangrove peat differs among mangal sub-habitats, leading to categorically distinct peat types reflective of the taphonomically active zone (TAZ). Here, taphonomic processes degrade and shape the peat until it is sequestered in the depth of final burial (DFB). Sequestered peats provide historical archives of the mangal depositional environment and the palaeoecological context of peat formation that are used to reconstruct mangal sub-habitats. However, as peat passes through the TAZ, information about the precursor mangal sub-habitat is reduced, which may skew mangrove community reconstructions. To better understand the influence of the TAZ on peat formation, we analyzed plant organ- and taxon-based measures by characterizing surficial mangrove peats from two contrasting mangal sub-habitats in Barnes Sound, Florida: a tidally influenced, Rhizophora-dominated fringe sub-habitat; and an inundated, interior mixed forest basin sub-habitat. We found (1) peats formed in basin sites have greater amounts of leaf litter, which correlates with reduced tidal activity and restricted detritivore access to the litter layer; (2) peats formed in fringe sites have higher root percentages, or root–shoot ratios, which provide a reliable method to differentiate between peats at depth, and (3) mangal sub-habitats differ in preserved organismal signals, such as foraminifera and insect parts. Further, we compare our surficial core samples to historical, deep core samples from other South Florida mangrove peat deposits to establish modern peat analogs needed to decipher preserved mangrove peats. These comparisons suggest that few aerial plant organs survive the TAZ and sequestered peats are biased towards root-rich peats characteristic of fringe sub-habitats; however, sequestered peats with lower root-shoot ratios indicate leaf litter-rich peats formed in basin sub-habitats.\",\"PeriodicalId\":106523,\"journal\":{\"name\":\"Bulletin of the Florida Museum of Natural History\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Florida Museum of Natural History\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58782/flmnh.wyms3450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Florida Museum of Natural History","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58782/flmnh.wyms3450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在南佛罗里达的红树林中,植物残骸积聚并腐殖质形成泥炭。不同亚生境红树林泥炭的结构和组成不同,导致泥炭类型的分类不同,反映了地理活跃带(TAZ)。在这里,埋藏过程降解和塑造泥炭直到它被隔离在最终埋藏的深处(DFB)。隔离泥炭提供了泥炭沉积环境的历史档案和泥炭形成的古生态背景,可用于重建泥炭亚生境。然而,当泥炭穿过隔离区时,有关原始红树林亚生境的信息减少,这可能会影响红树林群落的重建。为了更好地了解TAZ对泥炭形成的影响,我们分析了基于植物器官和分类的措施,通过对佛罗里达州巴恩斯湾两个不同的红树林亚栖息地的浅表红树林泥炭进行了表征:受潮汐影响,以根藻为主的边缘亚栖息地;和一个被淹没的内部混交林盆地亚栖息地。研究发现:(1)盆地样地形成的泥炭有更多的凋落叶,这与潮汐活动减少和碎屑进入凋落叶层受到限制有关;(2)边缘地形成的泥炭具有较高的根百分比或根冠比,这为区分深度泥炭提供了可靠的方法;(3)红树林亚生境在保存的生物信号(如有孔虫和昆虫部分)方面存在差异。此外,我们将我们的表层岩心样本与其他南佛罗里达红树林泥炭沉积物的历史深层岩心样本进行比较,以建立破译保存的红树林泥炭所需的现代泥炭类似物。这些比较表明,很少有空气植物器官能在干旱区存活下来,隔离泥炭倾向于边缘亚生境特征的富根泥炭;而根冠比较低的隔离泥炭则表明盆地亚生境中形成了富叶凋落物泥炭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Establishing Modern Peat Analogs to Decipher Mangal Sub-Habitats From Historical Peats
In mangroves of South Florida, plant debris accumulates and humifies to form peat. The structure and composition of mangrove peat differs among mangal sub-habitats, leading to categorically distinct peat types reflective of the taphonomically active zone (TAZ). Here, taphonomic processes degrade and shape the peat until it is sequestered in the depth of final burial (DFB). Sequestered peats provide historical archives of the mangal depositional environment and the palaeoecological context of peat formation that are used to reconstruct mangal sub-habitats. However, as peat passes through the TAZ, information about the precursor mangal sub-habitat is reduced, which may skew mangrove community reconstructions. To better understand the influence of the TAZ on peat formation, we analyzed plant organ- and taxon-based measures by characterizing surficial mangrove peats from two contrasting mangal sub-habitats in Barnes Sound, Florida: a tidally influenced, Rhizophora-dominated fringe sub-habitat; and an inundated, interior mixed forest basin sub-habitat. We found (1) peats formed in basin sites have greater amounts of leaf litter, which correlates with reduced tidal activity and restricted detritivore access to the litter layer; (2) peats formed in fringe sites have higher root percentages, or root–shoot ratios, which provide a reliable method to differentiate between peats at depth, and (3) mangal sub-habitats differ in preserved organismal signals, such as foraminifera and insect parts. Further, we compare our surficial core samples to historical, deep core samples from other South Florida mangrove peat deposits to establish modern peat analogs needed to decipher preserved mangrove peats. These comparisons suggest that few aerial plant organs survive the TAZ and sequestered peats are biased towards root-rich peats characteristic of fringe sub-habitats; however, sequestered peats with lower root-shoot ratios indicate leaf litter-rich peats formed in basin sub-habitats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Body Size Estimation in Toads (Anura: Bufonidae): Applicability to the Fossil Record Human-Driven Diversity Changes in Caribbean Parrots Across the Holocene Coyotes Reveal Baseline Nitrogen Decline Across End-Pleistocene Ecosystem Collapse Integrating Paleo, Historical, Archeological, and Traditional Ecological Knowledge Data into Caribbean Coral Reef Management Monitors with Memories: Death Assemblages Record a Century of Wastewater Pollution and Remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1