利用监督学习技术识别物联网上的僵尸网络

Amirhossein Rezaei
{"title":"利用监督学习技术识别物联网上的僵尸网络","authors":"Amirhossein Rezaei","doi":"10.13005/ojcst12.04.04","DOIUrl":null,"url":null,"abstract":"The security challenge on IoT (Internet of Things) is one of the hottest and most pertinent topics at the moment especially the several security challenges. The Botnet is one of the security challenges that most impact for several purposes. The network of private computers infected by malicious software and controlled as a group without the knowledge of owners and each of them running one or more bots is called Botnets. Normally, it is used for sending spam, stealing data, and performing DDoS attacks. One of the techniques that been used for detecting the Botnet is the Supervised Learning method. This study will examine several Supervised Learning methods such as; Linear Regression, Logistic Regression, Decision Tree, Naive Bayes, k- Nearest Neighbors, Random Forest, Gradient Boosting Machines, and Support Vector Machine for identifying the Botnet in IoT with the aim of finding which Supervised Learning technique can achieve the highest accuracy and fastest detection as well as with minimizing the dependent variable.","PeriodicalId":270258,"journal":{"name":"Oriental journal of computer science and technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying Botnet on IoT by Using Supervised Learning Techniques\",\"authors\":\"Amirhossein Rezaei\",\"doi\":\"10.13005/ojcst12.04.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The security challenge on IoT (Internet of Things) is one of the hottest and most pertinent topics at the moment especially the several security challenges. The Botnet is one of the security challenges that most impact for several purposes. The network of private computers infected by malicious software and controlled as a group without the knowledge of owners and each of them running one or more bots is called Botnets. Normally, it is used for sending spam, stealing data, and performing DDoS attacks. One of the techniques that been used for detecting the Botnet is the Supervised Learning method. This study will examine several Supervised Learning methods such as; Linear Regression, Logistic Regression, Decision Tree, Naive Bayes, k- Nearest Neighbors, Random Forest, Gradient Boosting Machines, and Support Vector Machine for identifying the Botnet in IoT with the aim of finding which Supervised Learning technique can achieve the highest accuracy and fastest detection as well as with minimizing the dependent variable.\",\"PeriodicalId\":270258,\"journal\":{\"name\":\"Oriental journal of computer science and technology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oriental journal of computer science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/ojcst12.04.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oriental journal of computer science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/ojcst12.04.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

物联网的安全挑战是当前最热门和最相关的话题之一,特别是几个安全挑战。僵尸网络是影响最广泛的安全挑战之一。被恶意软件感染的私人电脑组成的网络,在所有者不知情的情况下被控制成一个群体,每台电脑都运行一个或多个机器人,这种网络被称为僵尸网络。通常用于发送垃圾邮件、窃取数据、进行DDoS攻击。用于检测僵尸网络的技术之一是监督学习方法。本研究将考察几种监督学习方法,如;线性回归,逻辑回归,决策树,朴素贝叶斯,k近邻,随机森林,梯度增强机和支持向量机用于识别物联网中的僵尸网络,目的是找到哪种监督学习技术可以实现最高的准确性和最快的检测以及最小化因变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Botnet on IoT by Using Supervised Learning Techniques
The security challenge on IoT (Internet of Things) is one of the hottest and most pertinent topics at the moment especially the several security challenges. The Botnet is one of the security challenges that most impact for several purposes. The network of private computers infected by malicious software and controlled as a group without the knowledge of owners and each of them running one or more bots is called Botnets. Normally, it is used for sending spam, stealing data, and performing DDoS attacks. One of the techniques that been used for detecting the Botnet is the Supervised Learning method. This study will examine several Supervised Learning methods such as; Linear Regression, Logistic Regression, Decision Tree, Naive Bayes, k- Nearest Neighbors, Random Forest, Gradient Boosting Machines, and Support Vector Machine for identifying the Botnet in IoT with the aim of finding which Supervised Learning technique can achieve the highest accuracy and fastest detection as well as with minimizing the dependent variable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logical Foundations for Reasoning in Cyber - Physical Systems A Reinforcement Learning Paradigm for Cybersecurity Education and Training Physical Distancing Detection System with Distance Sensor for Covid-19 Prevention A Comparison Between Position-Based and Image-Based Multi-Layer Graphical user Authentication System Arduino Uno Based Child Tracking System Using GPS and GSM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1