基于规则的免疫受体信号模型的介绍

John A. P. Sekar, J. Faeder
{"title":"基于规则的免疫受体信号模型的介绍","authors":"John A. P. Sekar, J. Faeder","doi":"10.1201/9781315119847-5","DOIUrl":null,"url":null,"abstract":"Cells process external and internal signals through chemical interactions. Cells that constitute the immune system (e.g., antigen presenting cell, T-cell, B-cell, mast cell) can have different functions (e.g., adaptive memory, inflammatory response) depending on the type and number of receptor molecules on the cell surface and the specific intracellular signaling pathways activated by those receptors. Explicitly modeling and simulating kinetic interactions between molecules allows us to pose questions about the dynamics of a signaling network under various conditions. However, the application of chemical kinetics to biochemical signaling systems has been limited by the complexity of the systems under consideration. Rule-based modeling (BioNetGen, Kappa, Simmune, PySB) is an approach to address this complexity. In this chapter, by application to the Fc$\\varepsilon$RI receptor system, we will explore the origins of complexity in macromolecular interactions, show how rule-based modeling can be used to address complexity, and demonstrate how to build a model in the BioNetGen framework. Open source BioNetGen software and documentation are available at this http URL","PeriodicalId":153035,"journal":{"name":"Systems Immunology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An introduction to rule-based modeling of immune receptor signaling\",\"authors\":\"John A. P. Sekar, J. Faeder\",\"doi\":\"10.1201/9781315119847-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cells process external and internal signals through chemical interactions. Cells that constitute the immune system (e.g., antigen presenting cell, T-cell, B-cell, mast cell) can have different functions (e.g., adaptive memory, inflammatory response) depending on the type and number of receptor molecules on the cell surface and the specific intracellular signaling pathways activated by those receptors. Explicitly modeling and simulating kinetic interactions between molecules allows us to pose questions about the dynamics of a signaling network under various conditions. However, the application of chemical kinetics to biochemical signaling systems has been limited by the complexity of the systems under consideration. Rule-based modeling (BioNetGen, Kappa, Simmune, PySB) is an approach to address this complexity. In this chapter, by application to the Fc$\\\\varepsilon$RI receptor system, we will explore the origins of complexity in macromolecular interactions, show how rule-based modeling can be used to address complexity, and demonstrate how to build a model in the BioNetGen framework. Open source BioNetGen software and documentation are available at this http URL\",\"PeriodicalId\":153035,\"journal\":{\"name\":\"Systems Immunology\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315119847-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315119847-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

细胞通过化学相互作用处理外部和内部信号。构成免疫系统的细胞(如抗原提呈细胞、t细胞、b细胞、肥大细胞)可以根据细胞表面受体分子的类型和数量以及这些受体激活的特定细胞内信号通路而具有不同的功能(如适应性记忆、炎症反应)。明确建模和模拟分子之间的动力学相互作用使我们能够在各种条件下提出有关信号网络动力学的问题。然而,化学动力学在生化信号系统中的应用一直受到系统复杂性的限制。基于规则的建模(BioNetGen、Kappa、simune、PySB)是解决这种复杂性的一种方法。在本章中,通过应用于Fc$\varepsilon$RI受体系统,我们将探索大分子相互作用中复杂性的起源,展示如何使用基于规则的建模来解决复杂性,并演示如何在BioNetGen框架中构建模型。开源BioNetGen软件和文档可在此http URL获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An introduction to rule-based modeling of immune receptor signaling
Cells process external and internal signals through chemical interactions. Cells that constitute the immune system (e.g., antigen presenting cell, T-cell, B-cell, mast cell) can have different functions (e.g., adaptive memory, inflammatory response) depending on the type and number of receptor molecules on the cell surface and the specific intracellular signaling pathways activated by those receptors. Explicitly modeling and simulating kinetic interactions between molecules allows us to pose questions about the dynamics of a signaling network under various conditions. However, the application of chemical kinetics to biochemical signaling systems has been limited by the complexity of the systems under consideration. Rule-based modeling (BioNetGen, Kappa, Simmune, PySB) is an approach to address this complexity. In this chapter, by application to the Fc$\varepsilon$RI receptor system, we will explore the origins of complexity in macromolecular interactions, show how rule-based modeling can be used to address complexity, and demonstrate how to build a model in the BioNetGen framework. Open source BioNetGen software and documentation are available at this http URL
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zen and the art of parameter estimation in systems biology Spatial kinetics in immunological modeling From evolutionary computation to phenotypic spandrels Population dynamics of host and pathogens Modeling and inference of cell population dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1